Homework 6

Due on Mar 4 in class.

1. (20 pts) It is sometimes possible to make a 1 -form exact by multiplying it by a nonzero function of x and y called an integrating factor. For the following 1 -forms, in each of the nonexact ones, find an integrating factor of the form x^{n} for some integer n.
(a) $3 y d x+x d y$
(b) $\cos x \cos y d x-\sin x \sin y d y$
(c) $-y d x+x d y$
2. (20 pts)
(a) An immediate consequence of Green's theorem is that the area of a rectangle enclosed by C (with counterclockwise orientation) is $\int_{C} x d y$. Check this by direct calculation for a rectangle with vertices $(0,0),(a, 0),(a, b),(0, b)$.
(b) Let C be a circle of radius r centered at $(0,0)$ oriented counterclockwise. Check that $\int_{C} x d y$ gives the area inside the circle.
3. (40 pts) Let r, θ be polar coordinates, so $x=r \cos \theta, y=r \sin \theta$.
(a) (5 pts) Convert $d x$ and $d y$ to polar coordinates.
(b) ($\mathbf{3 0} \mathbf{p t s}$) Use (a) to calculate $\int_{C} d x+d y$ where C is given by

$$
r=\sin \theta, \quad 0 \leq \theta \leq \pi
$$

(c) (5 pts) Use the result in (a) to solve for $d r$ and $d \theta$.
4. (20 pts) Let f be a function such that

$$
\nabla f=\left(\frac{1}{2}-\frac{y^{2}}{2 x^{2}}, \frac{y}{x}\right)
$$

for $x>0$. Find the function $f(x, y)$ by computing some line integral
along a piece-wise line segment path from $(a, 0)$ to (x, y) with $a>0$ being some fixed constant. No credit at all if you only give some function.

