Homework 8

Due on Mar 25 before 10:30am on blackboard.

- 1. (30 pts) Find α so that $d\alpha = zdx \wedge dz + dy \wedge dz$. Follow the proof of Poincaré's Lemma to derive α step by step. Do not apply the formulas directly.
- 2. (30 pts) For the following vector fields $\langle f, g, h \rangle$, dertermine if there exists another vector field $\langle F, G, H \rangle$ so that $\nabla \times \langle F, G, H \rangle = \langle f, g, h \rangle$. If yes, apply the formulas directly to find what $\langle F, G, H \rangle$ are. If no, explain why.
 - (a) $\langle f, g, h \rangle = \langle xe^z + x, -y, -e^z \rangle.$
 - (b) $\langle f, g, h \rangle = \langle \cos(xyz), \sin(xyz), \sin(xyz) \rangle$.

(c)
$$\langle f, g, h \rangle = \langle \cos(yz), \cos(xz), \cos(xy) \rangle$$
.

3. (40 pts) Consider a four-variable (x, y, z, w denote the four variables) 3-form:

 $\omega = (yw + xy)dx \wedge dy \wedge dz + yzdx \wedge dy \wedge dw + zdx \wedge dw \wedge dz.$

- (a) Compute $d\omega$ and show that $d\omega = 0$. (Hint: for wedge product of four abstract vectors, switching any two vectors in any two positions results in a negative sign; if any two are the same, the wedge product is zero.)
- (b) By Poincaré's Lemma, there exists a 2-form α such that $d\alpha = \omega$. Find what α is following these steps:
- Step I: rewrite ω as $\omega = \omega_1 + \omega_2$ with ω_1 containing no dw, and dw appearing in the last position in the wedge products in ω_2 , i.e.,

$$\omega_1 = (yw + xy)dx \wedge dy \wedge dz,$$

 $\omega_2 = yzdx \wedge dy \wedge dw - zdx \wedge dz \wedge dw,$

then construct a 2-form β by integrating the coefficients in ω_2 :

$$\beta = \left(\int_0^w yzdt\right)dx \wedge dy + \left(\int_0^w -zdt\right)dx \wedge dz.$$

Step II: Finish these integrals and write down what β is. Compute $d\beta$ and find what $d\beta - \omega$ is (yes, it is $d\beta - \omega$ instead of $d\beta + \omega$, but why?).

Step III: Now $d\beta - \omega$ should be something like

$$F(x, y, z)dx \wedge dy \wedge dz,$$

then construct a 2-form γ by

$$\gamma = \left(\int_0^z F(x, y, t)dt\right)dx \wedge dy.$$

Compute $d\gamma$ and show that $d\beta - \omega - d\gamma = 0$. Last Step: therefore we have $d\beta - d\gamma = \omega$, so $\alpha = \beta - \gamma$. Find what α is. Compute $d\alpha$ to verify that $d\alpha$ is indeed ω .