Homework 8

Due on Mar 25 before 10:30am on blackboard.

1. (30 pts) Find α so that $d \alpha=z d x \wedge d z+d y \wedge d z$. Follow the proof of Poincare's Lemma to derive α step by step. Do not apply the formulas directly.
2. (30 pts) For the following vector fields $\langle f, g, h\rangle$, dertermine if there exists another vector field $\langle F, G, H\rangle$ so that $\nabla \times\langle F, G, H\rangle=\langle f, g, h\rangle$. If yes, apply the formulas direclty to find what $\langle F, G, H\rangle$ are. If no, explain why.
(a) $\langle f, g, h\rangle=\left\langle x e^{z}+x,-y,-e^{z}\right\rangle$.
(b) $\langle f, g, h\rangle=\langle\cos (x y z), \sin (x y z), \sin (x y z)\rangle$.
(c) $\langle f, g, h\rangle=\langle\cos (y z), \cos (x z), \cos (x y)\rangle$.
3. (40 pts) Consider a four-variable (x, y, z, w denote the four variables) 3-form:

$$
\omega=(y w+x y) d x \wedge d y \wedge d z+y z d x \wedge d y \wedge d w+z d x \wedge d w \wedge d z
$$

(a) Compute $d \omega$ and show that $d \omega=0$. (Hint: for wedge product of four abstract vectors, switching any two vectors in any two positions results in a negative sign; if any two are the same, the wedge product is zero.)
(b) By Poincaré's Lemma, there exists a 2-form α such that $d \alpha=\omega$. Find what α is following these steps:
Step I: rewrite ω as $\omega=\omega_{1}+\omega_{2}$ with ω_{1} containing no $d w$, and $d w$ appearing in the last position in the wedge products in ω_{2}, i.e.,

$$
\begin{gathered}
\omega_{1}=(y w+x y) d x \wedge d y \wedge d z \\
\omega_{2}=y z d x \wedge d y \wedge d w-z d x \wedge d z \wedge d w
\end{gathered}
$$

then construct a 2 -form β by integrating the coefficients in ω_{2} :

$$
\beta=\left(\int_{0}^{w} y z d t\right) d x \wedge d y+\left(\int_{0}^{w}-z d t\right) d x \wedge d z .
$$

Step II: Finish these integrals and write down what β is. Compute $d \beta$ and find what $d \beta-\omega$ is (yes, it is $d \beta-\omega$ instead of $d \beta+\omega$, but why?).

Step III: Now $d \beta-\omega$ should be something like

$$
F(x, y, z) d x \wedge d y \wedge d z
$$

then construct a 2 -form γ by

$$
\gamma=\left(\int_{0}^{z} F(x, y, t) d t\right) d x \wedge d y
$$

Compute $d \gamma$ and show that $d \beta-\omega-d \gamma=0$.
Last Step: therefore we have $d \beta-d \gamma=\omega$, so $\alpha=\beta-\gamma$. Find what α is. Compute $d \alpha$ to verify that $d \alpha$ is indeed ω.

