
Example: find Jordan Decomposition for the matrix

A =


1 2 1 1 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 .
Solution:

1. Find characteristic polynomials. |A − λI| = −(λ − 1)5 (because A − λI is upper
triangular). So we know there is only one eigen-value with algebraic multiplicity 5.

2. Find the eigen-space N(A− λI) for each λ. RREF denotes reduced row echelon form.

A− I =


0 2 1 1 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 ;RREF (A− I) =


0 1 1/2 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
So

N(A− I) = Span




0
−1

2

1
0
0

 ,


0
0
0
0
1

 ,


1
0
0
0
0


 .

Thus the geometrical multiplicity is 3. And we have three Jordan blocks for this
eigen-value. Let v1,v2,v3 denote these three eigen-vectors.

3. The sizes of the Jordan blocks are related to generalized eigen-vectors. We solve the
following three linear systems seperately:

(A− I)x = v1,

(A− I)x = v2,

(A− I)x = v3.

If we can find any solution x, then it’s a generalized eigen-vector.

In general, solve the three linear systems. Some of them may not have any solutions.
For this example, the matrices are simple thus we can easily see (A − I)x = v1 and
(A − I)x = v2 have no solutions because v1 and v2 are not in the column space of
A− I.

Since (A − I)x = v1 and (A − I)x = v2 have no solutions, there are no generalized
eigen-vectors related to them thus there are two 1× 1 Jordan blocks corresponding to
eigen-vectors v1 and v2. Since we know there are three Jordan blocks, so the third
Jordan block must be 3×3 for this 5×5 matrix (this is a special case, in general at this
step we may not know exactly what sizes they are and we have to find all generalized
eigen-vectors first).
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Therefore the Jordan form is (unique up to permutation of Jordan blocks):

J =


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1


4. Find generalized eigen-vectors. Since we know there is a 3× 3 Jordan block, we need

to find two generalized eigen-vectors v4 and v5 satisfying:

(A− I)v4 = v3

(A− I)v5 = v4

To find the solutions for (A−I)x = v3, find RREF of the augmented matrix [A−I|v3]:

RREF [A− I|v1] =


0 1 1/2 0 0 1/2
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .
The solution set for (A− I)x = v3 isr


1
0
0
0
0

 + s


0
−1

2

1
0
0

 + t


0
0
0
0
1

 +


0

1/2
0
0
0

 : r, s, t ∈ R


We need a vector v4 ∈ N [(A − I)2] ∩ C(A − I). Any vector in the solution set above
is in N [(A− I)2] (if (A− I)x = v3 then (A− I)2x = (A− I)v3 = 0).

We pick the solution with r = t = 0 and s = 1 (the one with r = s = t = 0 does not
work because that solution is not in C(A-I)).

v4 =


0
0
1
0
0

 .

Next to solve (A− I)x = v4 (v4 ∈ C(A− I) ensures we have solutions), we get

RREF [A− I|v4] =


0 1 1/2 0 0 −1/2
0 0 0 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .
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The solution set for (A− I)x = v4 isr


1
0
0
0
0

 + s


0
−1

2

1
0
0

 + t


0
0
0
0
1

 +


0
−1/2

0
1
0

 : r, s, t ∈ R


Any solution will do, so we pick r = s = t = 0. Thus

v5 =


0
−1/2

0
1
0

 .

5. Let P = [v1 v2 v3 v4 v5], then A = PJP−1.

Let P2 = [v2 v1 v3 v4 v5] then A = P2JP
−1
2 .

Let P3 = [v3 v4 v5 v1 v2], then

A = P3


1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

P−1
3 .

Let P4 = [v1 v3 v4 v5 v2] or P4 = [v2 v3 v4 v5 v1], then

A = P4


1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

P−1
4 .

These are pretty much all possible Jordan decompositions structures (of course eigen-
vectors and generalized ones are not unique, we can always use other eigen-vectors to
obtain different P ). The point is that the order of v3 v4 v5 cannot be permutated
because v4 v5 are generalized eigen-vectors.

Remark 1: If we have multiple different eigen-values, apply this method to each eigen-
value.

Remark 2: Why do the solution sets of (A−I)x = vi look similar? Recall that solutions
to Ax = b (if exist) are solutions to Ax = 0 plus a particular solution to Ax = b.
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