
MA/CS 615 Spring 2024 Homework #3

Due before class starts on Mar. 21. Late homework will not be given any credit.
Collaboration is OK but not encouraged. Indicate on your report whether you
have collaborated with others and whom you have collaborated with.
1. (25 pts) The simplified 1D Maxwell’s equations can be written as{

Et = Hx

Ht = Ex
, (0.1)

which is equivalent to Ett = Exx or Htt = Hxx. The leapfrog method (second order centered
difference for time and space derivatives) for the two-way wave equation utt = uxx is

Un+1
i − 2Un

i + Un−1
i

∆t2
=

Un
i+1 − 2Un

i + Un
i−1

∆x2
. (0.2)

The FDTD method (second order centered difference for time and space derivatives) for (0.1)
is defined on staggered grid for H:

En+1
i −En

i

∆t
=

H
n+1

2

i+1
2

−H
n+1

2

i− 1
2

∆x

H
n+1

2

i+1
2

−H
n− 1

2

i+1
2

∆t
=

En
i+1−En

i

∆x

(0.3)

(a) (5 pts) By eliminating H, show that (0.3) is equivalent to the leapfrog method for
solving Ett = Exx.

(b) Implement the leapfrog method (0.2) for solving the scalar 1D two-way equation with
periodic boundary conditions on a finite interval [−1, 1]. The exact solution for the
initial value problem

utt = c2uxx,

u(x, 0) = f(x), ut(x, 0) = g(x),

is given by

u(x, t) =
1

2
f(x+ ct) +

1

2
f(x− ct) +

1

2c

∫ x+ct

x−ct

g(z)dz.

(c) (5 pts) To initiate the computation, there are many ways. For instance, we can sim-
ply do a Taylor expansion in time around time=0 to get a second order accurate
approximation at t = ∆t: U1 = f(x) + g(x)∆t. Let D2

∆x denote the central differ-

ence discretization, i.e., D2
∆xUj =

Uj+1−2Uj+Uj−1

∆x2 . The semi-discrete equation can be
rewritten as a first order ODE system:(

Uj

U ′
j

)′

=

(
U ′
j

c2
Uj+1−2Uj+Uj−1

∆x2

)
=

(
0 1

c2D2
∆x 0

)(
Uj

U ′
j

)
.

Use the fourth order Runge-Kutta to solve this system for the first time step to initiate
your leapfrog scheme (you can use the exact solution at time=∆t first to initiate the
computation if there is any bug in your code).

1

(d) (15 pts) Set c = 3, f(x) = cos(πx)3 and g(x) = − sin(πx). Use time step ∆t = 0.7∆x
c

(the CFL number c∆t
∆x

≤ 1 is necessary to ensure the stability, try a bit larger time
step violating this constraint and see what happens). Validate your code by checking
the maximum error at time=1 for spatial grid points=40, 80, 120, 160, 200. Show
loglog plot of the errors and compare it the second order slope line. Plot the numerical
solution v.s. the exact solution for the finest grid at time=1. Also try the Taylor
expansion method to initiate the computation, and compare it with 4th order RK,
which method is more accurate?

2. (25 points) Consider 2D wave equation utt = c2(uxx + uyy) with periodic boundary
conditions on a square [−L,L]× [−L,L].

a. Implement the leapfrog scheme. Use 4th order RK to initiate the computation. For
MATLAB users, you should notice that loops might be inefficient because MATLAB
is an interpreted language. Instead, vectorize loops whenever possible. For instance,
to compute the discrete laplacian, using loops is straightforward but very slow:

% U and Laplacian are both 2D arrays of size Nx by Ny.
for j = 2:Ny−1
for i = 2:Nx−1

LaplacianU(i,j)=(U(i+1,j)−2*U(i,j)+U(i−1,j))/dxˆ2...
+(U(i,j+1)−2*U(i,j)+U(i,j−1))/dyˆ2;

end
end

One way to vectorize the discrete Laplacian with homogeneous Dirichlet boundary
condition is by Kronecker product kron function:

Nx = 10; % number of grid points in the x−direction;
Ny = 15; % number of grid points in the y−direction;
ex = ones(Nx,1);
% 1D discrete Laplacian in the x−direction ;
Dxx = spdiags([ex −2*ex ex], [−1 0 1], Nx, Nx)/dxˆ2;
ey = ones(Ny,1);
% 1D discrete Laplacian in the y−direction ;
Dyy = spdiags([ey, −2*ey ey], [−1 0 1], Ny, Ny)/dyˆ2;
% L is a matrix of size Nx*Ny by Nx*Ny
L = kron(Dyy, speye(Nx)) + kron(speye(Ny), Dxx) ;
% U is a matrix of Nx by Ny.
LaplacianU=L*reshape(U,Nx*Ny,1);
LaplacianU=reshape(LaplacianU, Nx, Ny);

b. (10 points) u(x, y, t) = cos
(√

2c2π
L
t
)
cos

(
2π
L
x
)
cos

(
2π
L
y
)
is a solution to the equation.

Use this smooth exact solution to check the second order accuracy of the scheme. Let
L = 2π and c = 1. The initial conditions are u(x, y, 0) = cos x cos y and ut(x, y, 0) = 0.
Boundary conditions are periodic. Fix ∆y = ∆x and ∆t = 0.9∆x/

√
2. Define the

2

L∞ error at the final time T as max
i,j

|Ui,j − u(xi, yj, T)| where Ui,j is the numerical

solution at the final time at the grid point (xi, yj). Run the code till T = 1 with
Nx = Ny = 8, 16, 32, 64, 128, 256. Show an error table in the following form (the
numbers were made up in the following table):

Nx Error Order
8 2.98e-1 –
16 4.21e-2 2.01
32 2.35e-3 1.99
64 8.00e-4 2.00

The order is computed as the following. Assume the error is equal to C∆xm and eN
denotes the error for the N -point mesh. Suppose we have eN for N = 8, 16, 32, · · · ,
we want to find m. Then eN

e2N
= C(2L

N
)m/C(2L

2N
)m = 2m thus m = log eN

e2N
/ log 2. For

instance, fill the cross of third column and the row Nx = 16 with log e8
e16

/ log 2, which
should be around 2 or larger than 2 if your code is correct.

c. (10 points) Let L = 1.1 and T = 1. Use initial condition u(x, y, 0) = 1
a2
e−(x2+y2)/a2 and

ut(x, y, 0) = 0 with a = 0.02. Fix ∆t = 0.99∆x/
√
2. Run with N = 800 till T = 1.

Plot three figures: 1) the solution Ui,j as a 2D image with color bars; 2) the solution
along the line x = 0, i.e., a 1D slice of the 2D solution along x = 0; 3) the diagonal of
the solution, i.e., the 1D cut along the line x = y, label the horizontal axis with
the distance to the origin

√
x2 + y2. Do the same thing to another initial condition

u(x, y, 0) = 0 and ut(x, y, 0) =
1
a2
e−(x2+y2)/a2 with a = 0.02.

d. (5 points) Compare them to your 1D solver for utt = uxx with the same initial conditions
1) u(x, 0) = 1

a2
e−x2/a2 and ut(x, 0) = 0 with a = 0.02 2) u(x, 0) = 0 and ut(x, 0) =

1
a2
e−x2/a2 with a = 0.02. Observe the fundamental difference between 2D and 1D

wave equations. Recall that 3D is equivalent to 1D with the assumption of spherical
symmetry. Wave equations in even dimensions are fundamentally different from those
in odd dimensions.

3. (20 pts) Consider the two dimensional linearized Euler equation for gas dynamics on a
plane:

ρ
u
v
p

t

= −

u0 ρ0 0 0
0 u0 0 ρ−1

0

0 0 u0 0
0 ρ0c

2
0 0 u0

ρ
u
v
p

x

−

v0 0 ρ0 0
0 v0 0 0
0 0 v0 ρ−1

0

0 0 ρ0c
2
0 v0

ρ
u
v
p

y

,

where (ρ0, u0, v0, p0) are fixed value of the state and p0 > 0, ρ0 > 0 and c20 = γ p0
ρ0
. Here γ is

a constant, e.g., γ = 1.4. Verify that the following matrix can symmetrize this system

S =

0 ρ0 1 −ρ0
0 c0 0 c0√
2c0 0 0 0
0 ρ0c

2
0 0 −ρ0c

2
0

 ,

3

so the problem is symmetric hyperbolic and thus it is strongly well posed.
4. (30 pts) Consider IVP for the 1D convection diffusion equation with periodic b.c. on
x ∈ [0, 2π]

ut = cux + duxx, u(x, 0) = f(x),

where c, d are constants and d > 0. Using the centered difference, we get a second order
accurate semi-discrete scheme

d

dt
Uj(t) = c

Uj+1 − Uj−1

2∆x
+ d

Uj+1 − 2Uj + Uj−1

∆x2
. (0.4)

(a) (10 pts) Suppose we use forward Euler to solve (0.4), then find the amplification factor
g(ξ) of the full scheme and verify that the following time step constraint is necessary
(not sufficient though) to ensure |g(ξ)| ≤ 1 to achieve stability

d
∆t

∆x2
≤ 1

2
, ∆t ≤ 2

d

c2
. (0.5)

Hint: set λ = c∆t
∆x

and µ = d ∆t
∆x2 to simplify notations. The change of variable

η = sin(ξ/2) also helps.

(b) (10 pts) So explicit time stepping for the diffusion term results in the time step con-
straint (0.5) implying ∆t = O(∆x2/d), which is unacceptably small unless d is very
small. To avoid small time steps like ∆t = O(∆x2), one popular choice is to use an
explicit-implicit time stepping (also called the IMEX method):

Un+1
j = Un

j + c∆t
Un
j+1 − Un

j−1

2∆x
+ d∆t

Un+1
j+1 − 2Un+1

j + Un+1
j−1

∆x2
, (0.6)

which is explicit in the convection term and implicit in the diffusion term. The scheme
(0.6) is first order accurate in time and second order accurate in space. Find the
amplification factor and show that the following time step constraint is necessary and
sufficient to achieve the stability |g(ξ)| ≤ 1:

∆t ≤ 2d

c2
.

(c) (10 pts) Implement the scheme (0.6). Test your code for the initial condition f(x) =
sin(x) with c = 1 and d = 0.2 on the interval x ∈ [0, 2π] with periodic boundary
conditions. Set ∆t = ∆x. Run it till T = π/5 with N = 20, 40, 80, 160, 320. In each
time step of the implicit scheme (0.6), a linear system must be solved for finding Un+1.
You can use either the inv (or the backslash) function in MATLAB or the eigenvector
method to invert the matrix. Plot the numerical solution and the exact solution in
the same figure on the finest mesh. Show loglog plot of the errors in max norm and
compare it the first order slope line. The exact solution is u(x) = e−dt sin(x+ ct).

4

