MA266 Practice Problems for Exam 1

1. If $y^{\prime}+\left(1+\frac{1}{t}\right) y=\frac{1}{t}$ and $y(1)=0$, then $y(\ln 2)=$?
A. $\ln 2-\ln (\ln 2)$
B. $\ln (\ln 2)$
C. $\ln (\ln 2)+\frac{1}{2 \ln 2}$
D. $\frac{1}{\ln 2}\left(1-\frac{e}{2}\right)$
E. $\frac{1}{\ln 2-1}$
2. What is the largest open interval for which a unique solution of the initial value problem

$$
t y^{\prime}+\frac{1}{t+1} y=\frac{t-2}{t-3}, \quad y(1)=0
$$

is guaranteed?
A. $0<t<1$
B. $0<t<2$
C. $0<t<3$
D. $-1<t<3$
E. $-1<t<1$
3. An explicit solution of $y^{\prime}=y^{2}-1$ is?
A. $y=\frac{C e^{2 t}}{1-C e^{2 t}}$
B. $y=\frac{1+C e^{2 t}}{1-C e^{2 t}}$
C. $y=\frac{1}{1-C e^{2 t}}$
D. $y=\frac{1+C e^{2 t}}{1-e^{2 t}}$
E. $\frac{y^{3}}{3}-y=C$
4. If $y^{\prime}=y^{3}$ and $y(0)=1$, then $y(-1)=$?
A. $5^{-\frac{1}{4}}$
B. $\frac{1}{\sqrt{3}}$
C. $\sqrt{3}$
D. 1
E. Does not exist
5. Let $y(x)$ be the solution to the initial value problem

$$
x y^{\prime}=3 y+2 x^{4}, \quad y(1)=0
$$

Then, $y(2)$ is
A. 4
B. 8
C. 16
D. 20
E. 32
6. A tank initially contains 40 ounces of salt mixed in 100 gallons of water. A solution containing 4 oz of salt per gallon is then pumped into the tank at the rate of $5 \mathrm{gal} / \mathrm{min}$. The stirred mixture flows out of the tank at the same rate. How much salt is in the tank after 20 minutes?
A. 20
B. 80
C. $40+20 e$
D. $400-360 e^{-1}$
E. $400+360 e^{2}$
7. Find the general solution of a homogeneous equation using substitution $v=\frac{y}{x}$.

$$
\frac{d y}{d x}=\frac{5 x^{2}+3 y^{2}}{2 x y}
$$

A. $y^{2}+5 x^{2}=C x^{3}$
B. $3 y^{2}+5 x^{2}=C x^{2}$
C. $x^{2}+3 y^{2}=C x$
D. $2 y-5 x^{2}=C x^{4}$
E. $y^{2}+3 x^{2}=C x^{3}$
8. Suppose that

$$
\frac{d y}{d x}=(x+y)^{2}-1
$$

What is the implicit general solution to this differential equation? (Hint: use the substitution $v(x)=$ $x+y$.)
A. $\frac{1}{x+y}+x=C$
B. $\frac{1}{x+y}-x=C$
C. $\frac{x}{y}+x=C$
D. $\frac{x}{y}-x=C$
E. $x(x+y)+1=C$
9. An implicit solution of

$$
y^{2}+1+(2 x y+1) \frac{d y}{d x}=0
$$

is?
A. $2\left(x y^{2}+y\right)=C$
B. $x y^{2}+y=C$
C. $x y^{2}+x+y=C$
D. $\frac{y^{3}}{3}+y+x^{2} y+x=C$
E. $y=x y^{2}+C$
10. Consider the autonomous differential equation

$$
\frac{d y}{d t}=-\frac{1}{10}(y-1)(y-4)^{2} .
$$

Classify the stability of each equilibrium solution.
A. $y=1$ and $y=4$ both unstable
B. $y=1$ unstable; $y=4$ stable
C. $y=0$ and $y=1$ stable; $y=4$ unstable
D. $y=1$ stable; $y=4$ semistable
E. $y=0$ stable; $y=1$ and $y=4$ unstable
11. Consider the following doomsday/extinction differential equation for a population $P(t)$ with the initial population $P(0)=4$.

$$
\frac{d P}{d t}=3 P(P-2)
$$

At what time t does "Doomsday" occur (which means the population explodes)?
A. $\frac{\ln (2)}{6}$
B. $\frac{\ln (2)}{3}$
C. $\frac{\ln (4)}{3}$
D. $\frac{\ln (4)}{6}$
E. ∞
12. Use Euler's method with step size $h=1$ to find the approximate value of $y(3)$, where $y(x)$ solves the initial value problem

$$
y^{\prime}=x+\frac{y}{2}, \quad y(0)=-8
$$

A. -17
B. -22.5
C. -23.5
D. -24.5
E. -27
13. If the Wronskian $W(f, g)=-3 e^{4 t}$ and $f(t)=4 e^{2 t}$, then $g(t)$ could be
A. $-\frac{3}{4} t e^{2 t}$
B. $\frac{3}{4} t e^{2 t}$
C. $12 e^{2 t}$
D. $-\frac{3}{2} e^{2 t}$
E. $-\frac{3}{4} t e^{4 t}$
14. The general solution of

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

is?
A. $y=C_{1} e^{2 t}+C_{2} t e^{2 t}$
B. $y=C_{1} e^{2 t}+C_{2} e^{2 t}$
C. $y=C_{1} e^{2 t}+C_{2} e^{-2 t}$
D. $y=C_{1} e^{-2 t}+C_{2} t e^{-2 t}$
E. $y=C_{1} t+C_{2} t^{2}$
15. The general solution of

$$
y^{\prime \prime \prime}+4 y^{\prime \prime}+5 y^{\prime}=0
$$

is?
A. $y=C_{1} e^{-2 t} \cos t+C_{2} e^{-2 t} \sin t \quad$ B. $y=C_{1}+C_{2} e^{-2 t} \cos t+C_{3} e^{-2 t} \sin t \quad$ C. $y=C_{1}+C_{2} e^{t} \cos 2 t+$ $C_{3} e^{t} \sin 2 t \quad$ D. $y=C_{1}+C_{2} \cos t+C_{3} \sin t \quad$ E. $y=C_{1}+C_{2} e^{2 t} \cos t+C_{3} e^{2 t} \sin t$
16. Let $y(x)$ be the solution to the reducible second-order differential equation

$$
y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0, \quad y(0)=0, y^{\prime}(0)=1
$$

Find $y(2)$. (Use the substitution $p=y^{\prime}>0$.)
A. $\ln 3$
B. e^{-2}
C. $\ln 5$
D. e^{4}
E. 4
17. An object weighting 8 pounds attached to a spring will stretch it 6 inches beyond its natural length. There is a damping force with a damping constant $c=6 \mathrm{lbs}-\mathrm{sec} / \mathrm{ft}$ and there is no external force. If at $t=0$ the object is pulled 2 feet below equilibrium and then released, the initial value problem describing the vertical displacement $x(t)$ becomes?
A. $\frac{1}{4} x^{\prime \prime}+6 x^{\prime}+16 x=0, x(0)=2, x^{\prime}(0)=0$
B. $8 x^{\prime \prime}+6 x^{\prime}+16 x=0, x(0)=-2, x^{\prime}(0)=0$
C. $8 x^{\prime \prime}+6 x^{\prime}+16 x=0, x(0)=2, x^{\prime}(0)=0$
D. $\frac{1}{4} x^{\prime \prime}+6 x^{\prime}+8 x=0, x(0)=2, x^{\prime}(0)=0$
E. $256 x^{\prime \prime}+$ $6 x^{\prime}+16 x=0, x(0)=2, x^{\prime}(0)=0$

Answer Key: 1.D 2.C 3.B 4.B 5.C 6.D 7.A 8.A 9.C 10.D 11.A 12.C 13.A 14.A 15.B 16.A 17.A

