I. VECTORS, LINES AND PLANES

- 1. Vector arithmetic; directed vector $\overline{P_0P_1}$ from P_0 to P_1 ; dot product of vectors $(a_1\vec{\mathbf{i}}+a_2\vec{\mathbf{j}}+a_3\vec{\mathbf{k}})\cdot(b_1\vec{\mathbf{i}}+b_2\vec{\mathbf{j}}+b_3\vec{\mathbf{k}}) = a_1b_1+a_2b_2+a_3b_3$; angle between two vectors, $\cos\theta = \frac{\vec{\mathbf{a}}\cdot\vec{\mathbf{b}}}{||\vec{\mathbf{a}}||\,||\vec{\mathbf{b}}||}$; cross product $\vec{\mathbf{a}}\times\vec{\mathbf{b}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ and their properties: $\vec{\mathbf{a}}\times\vec{\mathbf{b}}$ is perpendicular to both $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$, $\frac{1}{2}||\vec{\mathbf{a}}\times\vec{\mathbf{b}}|| =$ area of triangle spanned by $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$; projections $pr_{\vec{\mathbf{a}}}\vec{\mathbf{b}} = \left(\frac{\vec{\mathbf{a}}\cdot\vec{\mathbf{b}}}{||\vec{\mathbf{a}}||^2}\right)\vec{\mathbf{a}}$; $\vec{\mathbf{v}} = ||\vec{\mathbf{v}}||(\cos\theta\,\vec{\mathbf{i}}+\sin\theta\,\vec{\mathbf{j}})$.
- 2. Equation of line containing (x_0, y_0, z_0) , direction vector $\vec{\mathbf{L}} = a\vec{\mathbf{i}} + b\vec{\mathbf{j}} + c\vec{\mathbf{k}}$:
 - (a) Vector Form: $\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + t \vec{\mathbf{L}}$, where $\vec{\mathbf{r}}_0 = x_0 \vec{\mathbf{i}} + y_0 \vec{\mathbf{j}} + z_0 \vec{\mathbf{k}}$

(b) Parametric Form:
$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$

(c) Symmetric Form:
$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

(if say $b = 0$, then $\frac{x - x_0}{a} = \frac{z - z_0}{c}$; $y = y_0$)

3. Equation of plane containing (x_0, y_0, z_0) , normal vector $\vec{\mathbf{N}} = a\vec{\mathbf{i}} + b\vec{\mathbf{j}} + c\vec{\mathbf{k}}$:

$$\vec{\mathbf{N}} \cdot \overline{\mathbf{P_0P}} = 0$$
 or $a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$.

4. Sketching planes (look at intercepts : $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$).

II. <u>Vector-Valued Functions</u>

- 1. Differentiating and integrating vector-valued functions and sketching the corresponding curves.
- 2. Parameterizing curves of the form say y = f(x), $a \le x \le b$ $(C: \vec{\mathbf{r}}(t) = t \vec{\mathbf{i}} + f(t) \vec{\mathbf{j}}, a \le t \le b).$
- 3. Unit tangent vector $\vec{\mathbf{T}}(t) = \frac{\vec{\mathbf{r}}'(t)}{||\vec{\mathbf{r}}'(t)||}$; length of a curve $\int_a^b ||\vec{\mathbf{r}}'(t)|| dt$.

III. PARTIAL DERIVATIVES

- 1. Domains of functions of several variables; level curves f(x, y) = C, level surfaces f(x, y, z) = C; sketching surfaces using level curves.
- 2. Quadric surfaces.
- 3. Computing limits, determining when limits exist.
- 4. Partial derivatives; CHAIN RULE (consider tree diagrams).
- 5. Implicit Differentiation, for example :
 - (a) If y = y(x) is defined implicitly by F(x, y) = 0, then $\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$
 - (b) If z = z(x, y) is defined implicitly by F(x, y, z) = 0, then

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$$
 and $\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$

- 6. Gradients: $\nabla f(x, y, z) = f_x \vec{\mathbf{i}} + f_y \vec{\mathbf{j}} + f_z \vec{\mathbf{k}}$; the gradient $\nabla f(x, y)$ is perpendicular to level curve f(x, y) = C and $\nabla f(x, y, z)$ is perpendicular to level surface f(x, y, z) = C.
- 7. Directional derivative : $D_{\vec{u}}f(x, y, z) = \nabla f(x, y, z) \cdot \vec{u}$, where \vec{u} is a UNIT vector; $-||\nabla f|| \le D_{\vec{u}}f \le ||\nabla f||$; f(x, y, z) increases fastest in the direction ∇f .
- 8. Normal vector $\vec{\mathbf{n}}$ to surfaces \sum :
 - (a) \sum is a level surface, F(x, y, z) = C, then a normal is $\vec{\mathbf{n}} = \nabla F(x, y, z)$.
 - (b) \sum is the graph of z = f(x, y), then a normal is $\vec{\mathbf{n}} = -f_x \vec{\mathbf{i}} f_y \vec{\mathbf{j}} + \vec{\mathbf{k}}$
- 9. Tangent planes to surfaces; Tangent Plane Approximation Formula:

$$f(x+h, y+k) \approx f(x, y) + f_x(x, y) h + f_y(x, y) k.$$

10. Critical points of f(x, y, z): points where $\nabla f(x, y, z) = \vec{0}$ or $\nabla f(x, y, z)$ does not exist.

- 11. Finding relative extrema of f(x, y) at those particular critical points (x_0, y_0) where $\nabla f(x_0, y_0) = \vec{\mathbf{0}}$ using 2^{nd} Partials Test: let $D(x, y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$
 - (a) If $D(x_0, y_0) > 0$ and $f_{xx}(x_0, y_0) > 0 \Rightarrow f$ has rel minimum value at (x_0, y_0)
 - (b) If $D(x_0, y_0) > 0$ and $f_{xx}(x_0, y_0) < 0 \Rightarrow f$ has rel maximum value at (x_0, y_0)
 - (c) If $D(x_0, y_0) < 0 \Rightarrow f$ has a saddle point at (x_0, y_0) .
- 12. Finding absolute extrema over closed, bounded regions: find interior critical points, find points on the boundary where extrema may occur, make a table of values of f at all these points.
- 13. Constrained extremal problems: Maximize and/or minimize f(x, y) subject to the condition g(x, y) = C; Lagrange Multipliers: $\begin{cases} \nabla f = \lambda \nabla g \\ g(x, y) = C \end{cases}$

IV. <u>MULTIPLE INTEGRALS</u>

- 1. Double integrals; vertically and horizontally simple regions, iterated integrals; double integrals in polar coordinates $(dA = r dr d\theta)$
- 2. Applications of double integrals: areas between curves, volumes, surface area $S = \int \int_R \sqrt{f_x^2 + f_y^2 + 1} \ dA.$
- 3. Changing the order of integration in double integrals.
- 4. Triple integrals; iterated triple integrals; applications of triple integrals: volumes, mass $m = \int \int \int_D \delta(x, y, z) \, dV$.
- 5. Triple integrals in Rectangular, Cylindrical, and Spherical Coordinates:

(a) Rectangular Coordinates:
$$dV = dz \, dy \, dx$$
 or $dV = dz \, dx \, dy$, etc
(b) Cylindrical Coordinates:
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases} \quad dV = r \, dz \, dr \, d\theta$$
(c) Spherical Coordinates:
$$\begin{cases} x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta \\ z = \rho \cos \phi \end{cases} \quad dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\phi \, d\theta$$

V. <u>VECTOR FIELDS</u>

1. Vector fields $\vec{\mathbf{F}} = M \vec{\mathbf{i}} + N \vec{\mathbf{j}} + P \vec{\mathbf{k}}$; divergence and curl of a vector field $\vec{\mathbf{F}}$:

$$\operatorname{div} \vec{\mathbf{F}} = \nabla \cdot \vec{\mathbf{F}} = M_x + N_y + P_z$$

$$\operatorname{curl} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix};$$

Laplacian of $f = \operatorname{div} \nabla f = \nabla^2 f = f_{xx} + f_{yy} + f_{zz}$.

- 2. Conservative vector fields $\vec{\mathbf{F}} = \nabla f$; how to determine if $\vec{\mathbf{F}}$ is conservative : check that curl $\vec{\mathbf{F}} = \vec{\mathbf{0}}$ (if region has no "holes"); given that $\vec{\mathbf{F}} = \nabla f$, know how to determine the potential function f(x, y, z).
- 3. Line integrals of functions $\int_C f(x, y, z) \, ds = \int_a^b f(x(t), y(t), z(t)) ||\vec{\mathbf{r}}'(t)|| \, dt$; line integrals of vector fields $\vec{\mathbf{F}} = M \, \vec{\mathbf{i}} + N \, \vec{\mathbf{j}} + P \, \vec{\mathbf{k}}$:

$$\int_C \vec{\mathbf{F}} \cdot \vec{\mathbf{dr}} = \int_a^b \vec{\mathbf{F}}(\vec{\mathbf{r}}(t)) \cdot \vec{\mathbf{r}}'(t) dt$$

or equivalently $\int_C M dx + N dy + P dz = \int_a^b Mx' dt + Ny' dt + Pz' dt$, where $C : \vec{\mathbf{r}}(t) = x(t)\vec{\mathbf{i}} + y(t)\vec{\mathbf{j}} + z(t)\vec{\mathbf{k}}$, $a \le t \le b$.

- 4. Fundamental Theorem of Line Integrals: $\int_C \nabla f \cdot \mathbf{d}\mathbf{r} = f(P_1) f(P_0)$; independence of path (check if $\mathbf{F} = \nabla f$ or curl $\mathbf{F} = \mathbf{0}$); applications to work $W = \int_C \mathbf{F} \cdot \mathbf{d}\mathbf{r}$.
- 5. <u>GREEN'S THEOREM</u> : If C is a closed curve traversed counterclockwise, then

$$\int_C M(x,y) \, dx + N(x,y) \, dy = \int \int_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA \, .$$

6. Surface integrals : if \sum is the graph of z = f(x, y) with $(x, y) \in R$, then $\int \int_{\sum} g(x, y, z) \, dS = \int \int_{R} g(x, y, f(x, y)) \sqrt{f_x^2 + f_y^2 + 1} \, dA$.

7. Flux integral of $\vec{\mathbf{F}} = M \vec{\mathbf{i}} + N \vec{\mathbf{j}} + P \vec{\mathbf{k}}$ over the surface \sum , the graph of z = f(x, y) with $(x, y) \in R$, and $\vec{\mathbf{n}} =$ upper unit normal vector to \sum :

$$\int \int_{\Sigma} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, dS = \int \int_{R} \left\{ -M \, f_x - N \, f_y + P \right\} \, dA \, .$$

8. <u>DIVERGENCE THEOREM (GAUSS' THEOREM)</u>: If D is a solid region and \sum is its closed boundary surface, $\vec{\mathbf{n}} =$ outer unit normal to \sum , then

$$\int \int_{\Sigma} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, dS = \int \int \int_{D} \operatorname{div} \vec{\mathbf{F}} \, dV.$$