Supplementary Problems

A For what value(s), if any, of A will $y=A x e^{-x}$ be a solution of the differential equation $2 y^{\prime}+2 y=e^{-x} \quad$? For what value(s), if any, of B will $y=B e^{-x}$ be a solution?

B Using the substitution $u(x)=y+x$, solve the differential equation $\frac{d y}{d x}=(y+x)^{2}$.
C Using the substitution $u(x)=y^{3}$, solve the differential equation $y^{2} \frac{d y}{d x}+\frac{y^{3}}{x}=\frac{1}{x} \quad(x>0)$.
D Use dfield6 to plot the slope field for the differential equation $y^{\prime}=2 y-3 e^{-t}$.
Plot the solution satisfying $y(0)=1.001$. What happens to the solution as $t \longrightarrow \infty$? Plot the solution satisfying $y(0)=0.999$. What happens to this solution as $t \longrightarrow \infty$?

E Find the explicit solution of the Separable Equation $\frac{d y}{d t}=4 y-y^{2}, \quad y(0)=8$. What is the largest open interval containing $t=0$ for which the solution is defined ?

F The graph of $f(y)$ vs y is as shown:

(a) Find the equilibrium solutions of the autonomous differential equation $\frac{d y}{d t}=f(y)$.
(b) Determine the stability of each equilibrium solution.

G Solve the differential equation $\frac{d \theta}{d r}=\frac{2 r \theta}{\theta^{2}-r^{2}}$.
H (a) If $y^{\prime}=-2 y+e^{-t}, y(0)=1$ then compute $y(1)$.
(b) Experiment using the Euler Method (eul) with step sizes of the form $h=\frac{1}{n}$ to find the smallest value of n which will give a value y_{n} that approximates the above true solution at $t=1$ within 0.05 .

I (a) If $y^{\prime}=2 y-3 e^{-t}, y(0)=1$ then compute $y(1)$.
(b) Experiment using the Euler Method (eul) with step sizes of the form $h=\frac{1}{n}$ to find the smallest value of n which will give a value y_{n} that approximates the above true solution at $t=1$ within 0.05 .
\boxed{J} Consider the initial value problem $\left\{\begin{array}{l}y^{\prime}=2 t y-y^{2} \\ y(1)=2.5\end{array}\right.$. Using the the Euler, Improved Euler and Runge-Kutta Methods (eul, rk2, rk4 respectively) with $h=0.1$ to complete this table:

t_{n}	Euler y_{n}	Improved Euler y_{n}	Runge-Kutta y_{n}
1.0			
1.1			
1.2			
1.3			
1.4			
1.5			
1.6			

K Choosing smaller and smaller step sizes h does not guarantee better and better approximations even for a simple initial value problem like $\left\{\begin{array}{l}\frac{d y}{d t}=t(y-1) \\ y(-10)=0\end{array}\right.$.
(a) Verify that $y(t)=1-e^{\frac{\left(t^{2}-100\right)}{2}}$ is a solution of the above initial value problem.
(b) Approximate the actual solution at $t=10$ (note that $y(10)=0$) using the Runge-Kutta Method (rk4) with $h=0.2, h=0.1$ and $h=0.05$ and fill in the table:

h	Runge-Kutta Approximation at $t=10$	Actual Solution at $t=10$
0.20		0.0000
0.10		0.0000
0.05		0.0000

L Approximation methods for differential equations can be used to estimate definite integrals:
(a) Show that $y(x)=\int_{0}^{x} e^{-t^{2}} d t$ satisfies the initial value problem $\frac{d y}{d x}=e^{-x^{2}}, \quad y(0)=0$.
(b) Use the Runge-Kutta Method (rk4) with $h=0.1$ to approximate $y(1.5)$, i.e., $\int_{0}^{1.5} e^{-t^{2}} d t$.

M To transform any $2^{\text {nd }}$ order linear differential equation $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t)$ into an equivalent $1^{\text {st }}$ order linear system of equations

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=a_{11}(t) x_{1}(t)+a_{12}(t) x_{2}(t)+g_{1}(t) \\
x_{2}^{\prime}(t)=a_{21}(t) x_{1}(t)+a_{22}(t) x_{2}(t)+g_{2}(t)
\end{array}\right.
$$

one can use the substitution $\boldsymbol{x}_{\mathbf{1}}(\boldsymbol{t})=\boldsymbol{y}$ and $\boldsymbol{x}_{\mathbf{2}}(\boldsymbol{t})=\boldsymbol{y}^{\prime}$. Transform the initial value problem

$$
2 y^{\prime \prime}+3 y^{\prime}-t y=3 e^{t}, y(0)=1, y^{\prime}(0)=-4
$$

into an equivalent system of $1^{\text {st }}$ order equations with initial conditions.
N If $y^{\prime}=x y^{2}-y^{3}$ and $y(1)=2$, find $y^{\prime \prime}(1)$ and $y^{\prime \prime \prime}(1)$.
0 From the theory of elasticity, if the ends of a horizontal beam (of uniform cross-section and constant density) are supported at the same height in vertical walls, then its vertical displacement $y(x)$ satisfies the boundary value problem $\left\{\begin{array}{l}y^{\prime \prime \prime}=-P \\ y(0)=y(L)=0 \\ y^{\prime}(0)=y^{\prime}(L)=0\end{array}\right.$, where $P>0$ is a constant depending on the beam's density and rigidity and L is the distance between supporting walls:

(a) Solve the above boundary value problem when $L=4$ and $P=24$.
(b) Show that the maximum displacement occurs at the center of the beam $x=\frac{4}{2}=2$.

P Using Laplace Transforms, solve this boundary value problem: $\left\{\begin{array}{l}y^{\prime \prime}+4 y=16 t \\ y(0)=0 \\ y\left(\frac{\pi}{4}\right)=0\end{array}(*)\right.$.
Hint : Solve the initial value problem $\left\{\begin{array}{l}y^{\prime \prime}+4 y=16 t \\ y(0)=0 \\ y^{\prime}(0)=A\end{array}\right.$ and then determine A from $(*)$.
Q You can use Laplace transforms to find particular solutions to some nonhomogeneous differential equations. Use Laplace fransforms to find a particular solution, $y_{p}(t)$, of $y^{\prime \prime}+4 y=10 e^{t}$. Hint: Solve the initial value problem $\left\{\begin{array}{l}y^{\prime \prime}+4 y=10 e^{t} \\ y(0)=0 \\ y^{\prime}(0)=0\end{array}\right.$.
(You will get a different particular solution if you use Undetermined Coefficients or Variation of Parameters.)

R Tank \# 1 initially contains 50 gals of water with 10 oz of salt in it, while Tank \# 2 initially contains 20 gals of water with 15 oz of salt in it. Water containing $2 \mathrm{oz} / \mathrm{gal}$ of salt flows into Tank \# 1 at a rate of $5 \mathrm{gal} / \mathrm{min}$ and the well-stirred mixture flows from Tank \# 1 into Tank $\# 2$ at the same rate of $5 \mathrm{gal} / \mathrm{min}$. The solution in Tank \# 2 flows out to the ground at a rate of $5 \mathrm{gal} / \mathrm{min}$. If $x_{1}(t)$ and $x_{2}(t)$ represent the number of ounces of salt in Tank \# 1 and Tank \# 2, respectively, Set Up But Do Not Solve an initial value problem describing this system.

S If $\overrightarrow{\mathbf{x}}^{(1)}(t)$ and $\overrightarrow{\mathbf{x}}^{(2)}(t)$ are linearly independent solutions to the 2×2 system $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}$, then the matrix $\Phi(t)=\left(\overrightarrow{\mathbf{x}}^{(1)}(t), \overrightarrow{\mathbf{x}}^{(2)}(t)\right)$ is called a Fundamental Matrix for the system. Find a Fundamental Matrix $\Phi(t)$ of the system $\overrightarrow{\mathbf{x}}^{\prime}=\left(\begin{array}{cc}4 & -3 \\ 8 & -6\end{array}\right) \overrightarrow{\mathbf{x}}$.
T Find a particular solution $\overrightarrow{\mathbf{x}}_{p}(t)$ of these nonhomogeneous systems:
(a) $\quad \overrightarrow{\mathbf{x}}^{\prime}=\left(\begin{array}{rr}1 & 0 \\ 2 & -3\end{array}\right) \overrightarrow{\mathbf{x}}+\binom{5 e^{2 t}}{3}$
(b) $\quad \overrightarrow{\mathbf{x}}^{\prime}=\left(\begin{array}{rr}1 & 0 \\ 2 & -3\end{array}\right) \overrightarrow{\mathbf{x}}+\binom{0}{4 e^{t}}$
(c) $\quad \overrightarrow{\mathbf{x}}^{\prime}=\left(\begin{array}{rr}1 & 0 \\ 2 & -3\end{array}\right) \overrightarrow{\mathbf{x}}+\binom{10 \cos t}{0}$

