TABLE OF FORMULAS

1. CIRCLE

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

2. PARABOLA

$$
y-k=a(x-h)^{2}
$$

The graph of the function

$$
y=f(x)=a x^{2}+b x+c \quad(a \neq 0)
$$

is a parabola with vertex at $\left(-\frac{b}{2 a}, c-\frac{b^{2}}{4 a}\right)$.
3. COMPOUND INTEREST FORMULA. A principal P, earning interest compounded k times a year for n years at an annual rate r, will grow to the future value $F V$ according to the formula

$$
F V=P(1+i)^{k n}
$$

where $i=\frac{r}{k}$ is the periodic interest rate.
4. EFFECTIVE RATE OF INTEREST. The effective rate of interest R for an account paying a nominal rate r, compounded k times per year, is

$$
R=(1+i)^{k}-1
$$

where i is the periodic rate, $i=\frac{r}{k}$.
5. PRESENT VALUE. The present value $P V$ that must be deposited now to provide a future value, $F V, n$ years from now is given by the formula

$$
P V=F V(1+i)^{-k n}
$$

where interest is compounded k times per year at an annual rate $r(i$ is the periodic rate, $\frac{r}{k}$).
6. FUTURE VALUE OF AN ANNUITY. The future value $F V$ of an ordinary annuity with deposits of P dollars made regularly k times each year for n years, with interest compounded k times per year at an annual rate r, is

$$
F V=\frac{P\left[(1+i)^{k n}-1\right]}{i}
$$

where i is the periodic rate, $i=\frac{r}{k}$.
7. SINKING FUND PAYMENT. For an annuity to provide a future value $F V$, regular deposits P are made k times per year for n years, with interest compounded k times per year at an annual rate r. The payment P is given by

$$
P=\frac{F V i}{(1+i)^{k n}-1}
$$

where i is the periodic rate, $i=\frac{r}{k}$.
8. PRESENT VALUE OF AN ANNUITY. The present value $P V$ of an annuity with payments of P dollars made k times per year for n years, with interest compounded k times per year at an annual rate r, is

$$
P V=\frac{P\left[1-(1+i)^{-k n}\right]}{i}
$$

where i is the periodic rate, $i=\frac{r}{k}$.
9. INSTALLMENT PAYMENTS. The periodic payment P required to repay an amount A is given by

$$
P=\frac{A i}{1-(1+i)^{-k n}}
$$

where
r is the annual rate,
k is the frequency of compounding (usually monthly),
i is the periodic rate, $i=\frac{r}{k}$, and
n is the term of the loan in years.

