Seminars and Advanced Graduate Courses
offered by the
Mathematics Department
Fall, 1998

<table>
<thead>
<tr>
<th>MA 598A</th>
<th>MA 598D</th>
<th>MA 598F</th>
<th>MA 620</th>
<th>MA 638</th>
<th>MA 642</th>
<th>MA 663</th>
<th>MA 672</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 690A</td>
<td>MA 690B</td>
<td>MA 692A</td>
<td>MA 692B</td>
<td>MA 692C</td>
<td>MA 693B</td>
<td>MA 696A</td>
<td></td>
</tr>
</tbody>
</table>

Seminars

MA 598A: Abstract Algebra
Instructor: Prof. J. Lipman, office: Math 750, phone: 41994, lipman@math.purdue.edu
Time: TTh 1:30-2:45
Description: This course will cover fundamentals on groups, rings, and fields (excluding galois theory). It is intended to prepare students who don't have enough background in algebra for the faster-paced Ph.D. qualifier courses MA 553 and 554, as well as to introduce those whose goals may not include the algebra qualifiers to some of the basic concepts.
Text: A. Clark *Elements of Abstract Algebra*, Dover

MA 598D: How to Design a Course
Instructor: Dr. R. Saerens, Office: MATH 826, phone: 49-41906, saerens@math.purdue.edu
Time: M 3:30-4:20
Prerequisite: Though open to all graduate students, more senior TAs who have taught their own class and have experience writing exams, will benefit most. A minimum of 7 students is needed for the course to run.
Goal: Using a concrete example, participants will be guided through the various aspects of designing an undergraduate mathematics course (junior level), from choosing a textbook, to deciding on a lesson plan, writing ground rules, etc. The emphasis will be on the participants designing the course themselves and on participants critiquing each others' efforts in a constructive manner. "Lecturing" will be kept to an absolute minimum. Participants are expected to complete assignments by given deadlines. A commitment on the part of the participants to attend all the meetings and to do the assignments is expected.

MA 598F: Mathematics of Finance
Instructor: Prof. V. Weston, office: Math 746, weston@math.purdue.edu
Time: MWF 12:30
Prerequisite: MA 366 or equivalent (in particular, solutions of O.D.E.’s), MA 510 or equivalent (knowledge of multivariate calculus, in particular, curves, line integrals, double integrals, and the chain rule for partial derivatives). Also some knowledge of basic probability theory is required. Some basic analysis (Riemann integral and implicit function theorem).
Description: This is the core course for the new interdisciplinary Masters program in computational finance. The course outline is:

1. Mathematical model. Basic definition of options, risk, etc.; mathematical model of the market, asset, prices; put and call options; Ito's Lemma. Black-Scholes equation and boundary conditions.
2. Introduction to the diffusion equation. Well-posedness of mathematical problem; diffusion equation and its properties; initial-% boundary value problems; terminal-boundary value problems.
3. Some explicit solutions of the diffusion equation. Self-similar solutions; explicit solutions of the Black-Scholes equation, etc.
4. Green's function. Introduction to distribution theory, delta function and Heaviside step function; fundamental solution of the diffusion equation; Green's function representation of the solution of the initial-boundary value and terminal-boundary value problems.
5. Free boundary problems. Free boundary problems as applied to American options; formulation of the free boundary using the Green's function; local analysis of the free boundary; iterative methods for solving the free boundary equation.
6. Time dependent parameters. Discrete dividends and jump conditions.
7. Exotic and path dependent options.
8. Interest Rate Derivative Products.
10. Inverse Problem. Existing techniques for solving the inverse problem for the diffusion equation; applications to the determination of volatility, etc.

References:
2. *Options, Futures and Other Derivatives of Securities*, by J. C. Hull (Prentice-Hall, 2nd edition)

MA 620: Mathematical Theory of Optimal Control

Instructor: Prof. L. Berkovitz, office: Math 700, phone: 41936, brkld@math.purdue.edu

Time: MWF 10:30

Prerequisite: MA 544

Description: The course will be concerned with the mathematical theory of optimal control problems for systems governed by ordinary differential equations. The topic outline for the course is as follows: Examples of control problems from applied areas. Existence theorems. The Pontryagin Maximum Principle. Linear systems, Linear quadratic problems, Time optimal problems. Relationship to the calculus of variations. Hamilton-Jacobi theory and optimal feedback The "text" will be notes for a projected revised edition of my 1974 book *Optimal Control Theory*, Applied Mathematical Sciences, Vol. 12, Springer Verlag. An overview of the course content can also be gotten from L. Cesari, *Optimization - Theory and Applications. Problems with Ordinary Differential Equations*, Springer Verlag, 1983. I have put these books on reserve for perusal by interested parties.

MA/STAT 638: Stochastic Processes I

Instructor: Prof. S. Lalley, office: Math 504, lalley@stat.purdue.edu

Time: MWF 10:30 **<<< NOTE NEW TIME >>>**

Prerequisite: MA/STAT 539

Description: Advanced topics in probability theory which may include stationary processes, independent increment processes, Gaussian processes; martingales, Markov processes, ergodic theory.

MA 642: Methods of Linear and Nonlinear Partial Differential Equations I

Instructor: Prof. D. Phillips, office: Math 706, phone: 41939, phillips@math.purdue.edu

Time: MWF 11:30 **<<< NOTE NEW TIME >>>**

Prerequisite: MA 523 and 611.
Description: Second order elliptic equations including maximum principles, Harnack inequality, Schauder estimates, and Sobolev estimates. Applications of linear theory to nonlinear equations.

MA 663: Algebraic Curves and Functions I
Instructor: Prof. J. Lipman, office: Math 750, phone: 41994, lipman@math.purdue.edu
Time: TTh 10:30-11:45
Prerequisite: MA 553, 554, or permission of the instructor.
Description: The course will provide an algebraic foundation for further study in number theory or algebraic geometry. Some commutative algebra (integral dependence, Dedekind domains, discrete valuation rings, Krull dimension...) will be covered, and applied to set up basic theory of algebraic numbers and algebraic curves, including factorization, units, divisor class groups, and the Riemann-Roch theorem.
Text: D. Lorenzini *An invitation to Arithmetic Geometry*, chapters I-VII and IX, (on reserve in the library)

MA 665: Algebraic Geometry
Instructor: Prof. S. Abhyankar, office: Math 950, phone: 41933, ram@math.purdue.edu
Time: TTh 3:00-4:15
Description: Topics discussed will include Resolution of Singularities, Calculation of Algebraic Fundamental Groups, Geometry of Lie Type Groups, and the Jacobian Problem. The presentation will be self-contained. There are no formal prerequisites. All interested persons are welcome.
Recommended Texts:
1. Abhyankar *Algebraic Geometry for Scientists and Engineers*, AMS.

MA 672: Algebraic Topology I
Instructor: Prof. J. Becker, office: Math 732, phone: 41953, e-mail: becker@math.purdue.edu
Time: MWF 10:30
Description: The course will be a continuation of MA 572. Topics will include: cohomology theory with primary emphasis on K-theory, Poincare, Alexander, Spanier--Whitehead duality, characteristic classes, and equivariant K--theory as time permits.
References:
1. M. F. Atiyah *K-Theory*
2. A. Dold *Lectures on Algebraic Topology*

MA 690A: Introduction to Geometric Invariant Theory
Instructor: Prof. K. Matsuki, office: Math 614, phone: 41970, kmatsuki@math.purdue.edu
Time: MWF 1:30
Prerequisite: Some familiarity with commutative algebra is desired but not absolutely necessary. If you have taken Prof. Huneke's course in 1997-98, then you know probably more than I do. Some familiarity with algebraic geometry is desired but again not necessary. If you browse through the first chapters of Harris' textbook *Algebraic Geometry*, then you know probably more words than I would use in the class. Absolute requirement, though, is mathematical enthusiasm to participate and work out the homework assignments that I give for the course.
Description: In many subjects of mathematics we observe the importance of studying the action of a group G on an object X and its quotient X/G. Algebraic Geometry is no exception! The purpose of this course is to understand the action of a group G (finite groups, reductive groups, etc.) on an algebraic variety X and the subtleties about the
"quotient" X/G leading up to Geometric Invariant Theory of Mumford.

I would like to start with such a classical subject, Hilbert's Fourteenth Problem, concerning the finiteness of the generators for the invariant ring R^G where R is the ring of regular functions $R=\mathbb{k}[x_1, \ldots, x_n]/I$ for an AFFINE variety defined by the ideal I. Then we move on to the discussion of taking the quotient of a PROJECTIVE variety, the main subject of Geometric Invariant Theory. Despite its importance, the theory has not been readily available to beginners or people outside the field, partially because Mumford's original book requires a substantial amount of technical mastery on the reader's side. Fortunately Mukai has written a textbook which tries to convey the main ideas of GIT, with many interesting examples but without assuming a huge technical background (No use of language of SCHEME). The only catch is 'dots it is in Japanese! In the course, I'll try to be both translator in language and a guide in this beautiful garden to wander around.

MA 690B: Representation Theory and Automorphic Forms
Instructor: Prof. F. Shahidi, office: Math 802, phone: 41917, shahidi@math.purdue.edu
Time: MWF 9:30
Prerequisite: The course taught by Prof. Lipman in the Fall of 1997 should cover some of the things needed for chapter 2 (modular forms). The course being taught by Prof. Roche in the Spring of 1998 should be covering a lot more than what I may need from structure theory.
Description: I am planning to teach a course on representation theory of reductive groups (over \mathbb{R}, \mathbb{Q}_p or \mathbb{Q}) through the theory of automorphic forms. I will probably use Bump's book. But try to do the theory for $GL(n)$ and some other groups. My aim will be to develop enough representation theory that some theory of L-functions and automorphic forms can be developed from.

MA 692A: Special Topics in Numerical Analysis
Instructor: Prof. J. Douglas, office: Math 822, phone: 41927, douglas@math.purdue.edu
Time: TTh 3:00-4:15
Description: Numerical solution of differential equations, modelling of flows and waves in porous media and their numerical approximation, inverse and not-well-posed problems.

MA 692B: Wavelets and Image Processing
Instructor: Prof. B. Lucier, office: Math 634, phone: 41979, lucier@math.purdue.edu
Time: MWF 9:30
Prerequisite: MA 544 (real analysis through measure theory) and some functional analysis (the first three chapters on Metric Spaces, Banach Spaces, and Hilbert Spaces of ℓ^p Elements of Applicable Functional Analysis) by Charles W. Groetsch would suffice.
Description: The goal of the course is to describe and analyze nonlinear wavelet algorithms for three fundamental problems in low-level image processing: image compression, Gaussian noise removal, and inverting the Radon transform and other homogeneous linear operators with noisy data (which has application to medical imaging-Magnetic Resonance Imaging, Computed Tomography, and especially Positron Emission Tomography). The main mathematical tool will be Nonlinear Approximation Theory and its relation to the theory of smoothness spaces (i.e., characterizing the smoothness of images in useful ways); we will also use some simple probability theory, variational principles, etc. The main focus of the course will be the rigorous analysis of the algorithms, not the development or theory of wavelet filters per se.
Text: Ten Lectures on Wavelets by I. Daubechies
Although (or perhaps because) the material presented in class will complement the material in this book, every student should have a copy of this book.

MA 692C: Topics in Mathematical Biology
Instructor:irim Prof. Z. Feng, zfeng@math.purdue.edu
Time: MWF 9:30
Seminars and Advanced Graduate Courses

Prerequisite: Calculus and an introductory course in probability and/or statistics. Some knowledge of linear algebra would be helpful. Description: This course is an introduction to the application of mathematical methods and concepts to the description and analysis of biological processes. The mathematical contents consist of difference and differential equations, basic probability theory and elements of stochastic processes. The topics to be covered include dynamical systems theory motivated in terms of its relationship to biological theory, deterministic models of population processes, life history evolution, epidemiology, coevolutionary systems, structured population models, nonlinear dynamics and chaos, stochastic processes, and introduction to Mathematica (computer package). Bio-mathematical research projects (in small group) may be carried out. Course grading will be based on weekly assignments, in-class mid-term, a take home final, and a project.

Text and class materials:
2. Class notes and Handouts and Articles on reserve.

MA 693B: Invariant Spaces
Instructor: Prof. L. de Branges, office: Math 800, phone: 46057, branges@math.purdue.edu
Time: MWF 2:30
Description: The course continues the theme of a return to fundamentals for advanced applications. The fundamental concepts involved are the Hahn-Banach theorem and its applications to integration theory. A generalization of the Riesz-Stieltjes representation of nonnegative linear functionals on spaces of continuous functions has been outlined in a previous application of the Hahn-Banach theorem. A related structure theory is now obtained for continuous linear functionals on spaces of vector valued functions defined on a vector space. The Borsuk construction of invariant subspaces is an application when the vector space has finite dimension. A generalization due to Victor Lomonosov is obtained when the vector space is a Banach space. A compactness hypothesis which he assumes is removed. A structure theory results for algebras of continuous linear transformations on a Banach space which are closed on the weak topology induced by the trace class.

MA 696A: Topics in Complex Manifolds
Instructor: Prof. S. Yeung, office: Math 712, phone: 41942, yeung@math.purdue.edu
Time: MWF 11:30
Prerequisite: 530, 562. Some basic understandings in algebraic geometry and several complex variables will be helpful as well.
Description: In this course, some basic techniques in Kahler geometry will be studied. Tentatively, the following topics will be covered: introduction to Kahler geometry, Hermitian symmetric spaces, vanishing theorems, harmonic maps, rigidity problems, and other topics depending on the progress of the course.
References:
2. Mok, N. Metric Rigidity Theorems on Hermitian locally symmetric manifolds, Work Scientific

Seminars, Fall 1998

- Topology Seminar, Prof. Gottlieb
 Time: Thursdays, 3:00-4:00

- PDE Seminar, Prof. Phillips
 Time: Tuesdays, 9:30-10:20
• **Algebraic Geometry Seminar**, Prof. Abhyankar
 Time: Thursdays 4:30-6:00

• **Geometric Analysis Seminar**, Prof. Lempert
 Time: Monday 4:30

• **Probability Seminar**, Prof. Protter
 Time: Wednesdays 3:30

• **Linear Algebra and Complex Analysis**, Prof. de Branges
 Time: Thursdays 2:30

• **Function Theory**, Prof. Drasin
 Time: Wednesdays 1:30

• **Commutative Algebra/Algebraic Geometry**
 Time: Wednesdays 4:30

• **Automorphic Forms and Representation Theory**, Prof. F. Shahidi
 Time: Thursdays 1:30