
RIEMANN SURFACES
Instructor: Prof. Donu Arapura (dvb@math.purdue.edu, 4-1983)

Course Number 59800 CRN:
Credits:

Time: 3:00p-4:15p TTh

Description

Riemann introduced his surfaces in the middle of the 19th century in order to “geometrize”
complex analysis. In doing so, he paved the way for a great deal of modern mathematics
such as algebraic geometry, manifold theory, and topology. So this would certainly be of
interest to students in these areas, as well as in complex analysis or number theory. In
simple terms, a Riemann surface is a surface which locally looks like the complex plane.
We’ve all seen simple examples: open subsets of the plane, the sphere, and perhaps the
domain of the “multivalued function”

√
z. More exotic examples include elliptic curves,

which includes what you get by identifying the sides of a square with corners 0, 1, i and
1 + i.

My plan is to cover the theory, assuming only the standard algebra (M553) and complex
analysis (M530) courses, and to reach the major theorems such as the Riemann-Roch
theorem, which is an existence theorem for meromorphic functions with prescribed singu-
larities, and the uniformization theorem which gives the classification of simply connected
Riemann surfaces. Also since my goal is to get students up to speed on topics relevent
to further studies in algebraic or complex geometry or topology, I will give self contained
introductions on auxillary topics such as bundles, sheaves, de Rham cohomology and so
on. I was thinking of using Donaldson’s recent book or Riemann Surfaces, which looks
quite nice.

INTRODUCTION TO DESSINS D’ENFANTS
Instructor: Prof. Edray Goins (egoins@math.purdue.edu, 4-1936

Course Number: MA 59800 CRN: 63571
Credits: Three

Time: 3:30 p.m.–4:20 p.m. MWF

Description

Given a collection of m homogeneous polynomials Fk, the set

V (C) =
{
P ∈ Pn(C)

∣∣ Fk(P ) = 0 for k = 1, 2, . . . , m
}

is called an algebraic variety because it is defined by algebraic equations V :F1 = F2 = · · · =
Fm = 0. If instead of using polynomials, we use analytic functions, we have an analytic
variety. Indeed, Riemann surfaces are examples of analytic varieties. There are cases
there these two concepts coincide: a compact, connected Riemann surface X is actually
an algebraic variety. To be more precise, X = V (C) is a smooth, irreducible, projective



variety of dimension 1 corresponding to a single equation V :
∑

i,j aij z
i wj = 0. The

French mathematician André Weil proved in 1956 that if there exists rational function
β : X → P1(C) which has at most three critical values, then X can be defined by a a
polynomial equation where the coefficients aij are not transcendental. Conversely – and
surprisingly – the Russian mathematician Gennadĭı Vladimirovich Bely̆ı showed in 1979
that if X can be defined by a polynomial equation

∑
i,j aij z

i wj = 0 where the coefficients

aij are not transcendental, then there exists a rational function β : X → P1(C) which has
at most three critical values.

Motivated by Bely̆ı’s discovery, the French mathematician Alexander Grothendieck
wrote a letter in 1984 outlining several new directions for his research. “This discovery,”
he wrote, “which is technically so simple, made a very strong impression on me, and it
represents a decisive turning point in the course of my reflections, a shift in particular of
my centre of interest in mathematics, which suddenly found itself strongly focused. [ . . . ]
This is surely because of the very familiar, non-technical nature of the objects considered,
of which any child’s drawing scrawled on a bit of paper (at least if the drawing is made
without lifting the pencil) gives a perfectly explicit example. To such a ‘dessin’ we find
associated subtle arithmetic invariants, which are completely turned topsy-turvy as soon
as we add one more stroke.” He realized that maps β : X → P1(C) which have at most
three critical values give graphs – called “Dessins d’Enfants” !

– which contain useful arithmetic information.

In this course, we discuss the budding theory behind Dessins d’Enfants. We will cover
the text ”Introduction to Compact Riemann Surfaces and Dessins d’Enfants” (London
Mathematical Society Student Texts) by Ernesto Girondo and Gabino González-Diez. We
will discuss the Riemann surfaces, algebraic curves, the Riemann-Roch Theorem, Fuch-
sian groups, monodromy, Galois groups, algebraic varieties, elliptic curves, and modular
functions.

Prerequisite: MA 52500 (Introduction to Complex Analysis) and MA 55300 (Introduc-
tion to Abstract Algebra).

STOCHASTIC CALCULUS
Instructor: Prof. Fabrice Baudoin (fbaudoin@math.purdue.edu, 4-1406

Course Number: MA 59800 CRN: 63572
Credits: Three

Time: 10:30 a.m.–11:20 a.m. MWF

Description

This course will cover the theory of stochastic integration and its applications . We will
focus on the following topics:

1. Martingales in continuous time;

2. Brownian motion;



3. Stochastic integration;

4. Stochastic di?erential equations;

5. Malliavin calculus.

P
¯
rerequisite: Basic probability theory: Random variables, Central limit theorem, Law of

large numbers, Conditional expectations.

Lecture notes are posted on my blog http://fabricebaudoin.wordpress.com/

MIXED AND LEAST-SQUARES FINITE ELEMENT METHODS
FOR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

Instructor: Prof. Zhiqiang Cai (zcai@math.purdue.edu, 4-1921
Course Number: MA 59800 CRN: 63573

Credits: Three
Time: 9:00 a.m.–10:15 a.m. TTh

Description

The original physical equations for mechanics of continua are systems of partial differ-
ential equations of first-order. There are many advantages to simulate these first-order
systems directly. This can be done through either mixed or least-squares finite element
methods. This course is an introduction to both techniques, with applications to Darcy’s
flow in porous media, elastic equations for solids, incompressible Newtonian fluid flow,
and Maxwell’s equations in electromagnetic. We shall focus on fundamental issues such
as (mixed and least-squares) variational formulations and construction of finite element
spaces of H1, H(div), and H(curl). A review of fast iterative solvers such as multigrid
and domain decomposition for algebraic systems resulting from discretization will also be
presented.

A tentative list of contents:

1. Mathematical Models of Continuum Mechanics

2. Construction of Finite Element Spaces in H1, H(div), or H(curl)

3. Mixed Variational Formulations

4. Least-Squares Variational Formulations

5. Finite Element Approximations

6. Iterative Solvers

7. FOSPACK a computer package based on least-squares methods

Prerequisite: MA/CS 615 or equivalent or consent of instructor.

References



1. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag,
New York, 1991.

2. V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: The-
ory and Algorithms, Springer-Verlag, New York, 1986.

3. P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press,
Oxford, 2003.

4. W. Briggs, V. Henson, S. McCormick, A Multigrid Tutorial, Second Edition, SIAM,
Philadelphia, 2000.

5. research articles and my lecture notes.

MATHEMATICAL THEORY OF OPTIMAL CONTROL
Instructor: Prof. Donatella Danielli (danielli@math.purdue.edu, 4-1920)

Course Number: MA 62000 CRN: 63083
Credits: Three

Time: 10:30 a.m.–11:20a.m. MWF

Description

This course is an introduction to the mathematical theory of optimal control of processes
governed by ordinary differential equations. In recent years, control problems have arisen
in very diverse areas, such as production planning, chemical and electrical engineering, and
flight mechanics. The course will focus on the mathematical formulation of such problems
and the existence of optimal controls both with and without convexity assumptions. One
of the crucial tools for the characterization of optimal controls, namely the maximum
principle, will be illustrated and (if time permits) proved. Finally, the relationship with
the Calculus of Variations and applications will be discussed.

Prerequisite: MA 54400 or instructor’s consent.

References

1. L. D. Berkoviz, Optimal Control Theory, Springer.

METHODS OF LINEAR AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS I
Instructor: Prof. Patricia Bauman (bauman@math.purdue.edu, 4-1945)

Course Number: MA 64200 CRN: 63568
Credits: Three

Time: 9:30 A.M.-10:30 A.M. MWF

Description

This is the first semester of a one-year course in the theory of second order elliptic and
parabolic PDEs. The aim of the course is to study the solvability of boundary value prob-
lems and regularity properties of solutions. The first semester will focus on linear elliptic



equations, both in divergence and nondivergence form. The starting point for the study of
classical solutions will be the theory of Laplace’s and Poisson’s equations. The emphasis
here will be on: (1) existence of solutions to the Dirichlet problem for harmonic functions
via the Perron method (based on the maximum principle) and (2) Holder estimates for
solutions of Poisson’s equation derived from the analysis of the Newtonian potential. The
crowning achievement of the theory of classical solutions is Schauder’s theory, which ex-
tends the results of potential theory to a general class of non-divergence form equations
with Holder-continuous coefficients. In the second part of the semester we will consider a
more general and modern approach to linear problems, based not on potential theory, but
on Hilbert space methods for so-called weak solutions. Our main goal will be to proave
the celebrated De Giorgi-Nash-Moser theorem on the regularity of weak solutions. The
relevant tools from the theory of Sobolev spaces will be developed concurrently.

Prerequisites: MA 54400 and MA 61100, or instructor’s approval.

RIEMANN HYPOTHESIS
Instructor: Prof. Louis deBranges (branges@math.purdue.edu, 4-6057)

Course Number: MA 69000 CRN: XXXXX
Credits: Three

Time: 9:30-10:30 A.M. MWF

Description

A proof of the Riemann hypothesis is given in Fourier analysis on skew–fields. The course is
primarily concerned with the use of Laplace transformation for the computation of Fourier
transforms and the resulting use of the Mellin transformation to produce Jacobian zeta
functions multiplied by gamma function factors. A verification is made of a conjecture
made in 1986 which implies the conjectured line of zeros of these zeta functions. The clas-
sical zeta functions of Euler and Dirichlet are factors of the simplest Jacobi–zeta functions.
The classical Riemann hypothesis is a consequence of its generalization to Jacobi zeta func-
tion (which are essentially the same as the zeta functions constructing from modular forms.
Students should have passed qualifying examinations before registering.

INVERSE SCATTERING PROBLEMS FOR WAVE PROPAGATION
Instructor: Prof. Peijun Li (lipeijun@math.purdue.edu, 4-0846)

Course Number: MA 69200 CRN: 63578
Credits: Three

Time: 12:00p.m–1:15 p.m. TTh

Description

Scattering problems are concerned with the effect that an inhomogeneous medium has on
an incident field. In particular, if the total field is viewed as the sum of an incident field



and a scattered field, the direct scattering problem is to determine the scattered field from
the incident field and the differential equation governing the wave motion; the inverse
scattering problem is to determine the nature of the inhomogeneity, such as location,
geometry, or material property, from a knowledge of the scattered field. These problems
have played a fundamental role in diverse scientific areas such as radar and sonar (e.g.,
stealth aircraft design and submarine detection), geophysical exploration (e.g., oil and gas
exploration), medical imaging (e.g., breast cancer detection), near-field optical microscopy
(e.g., imaging of small scale biological samples), and nano-optics. This course introduces
mathematical models and computational methods for four classes of inverse problems that
arise from the acoustic and electromagnetic wave propagation in complex and random
media, which include the inverse surface scattering problem, inverse obstacle scattering
problem, inverse medium scattering problem, and inverse source scattering problem.

Text: No textbook is required. Lecture notes will be made available to students.

Course grade: No exams. Students are required to present course-related material in
class.

Prerequisite: Basic knowledge of functional and numerical analysis, and partial differ-
ential equations.

References

1. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory

2. H. Engle, M. Hanke, and A. Neubauer, Regularization of Inverse Problems

3. J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for
Harmonic Problems

AN INTRODUCTION TO COMPRESSED SENSING
Instructor: Prof. Ben Adcock (adcock@math.purdue.edu, 4-1981)

Course Number: MA 69200 CRN: 63576
Credits: Three

Time: TTh 12:00pm-1:15pm

Description

This is a course in compressed sensing and its applications in signal and image process-
ing. In the past decade, compressed sensing has emerged as a powerful new theory that
overcomes traditional barriers in sampling. Under appropriate conditions, it states that
signals and images to be recovered from seemingly highly incomplete data sets. Moreover,
not only is this possible in theory, reconstruction can be carried out efficiently in practice
by standard numerical algorithms. This has important implications for many real-world
applications, not least medical imaging, radar, analog-to-digital conversion, and sensor net-
works. The goal of this course is to provide a comprehensive introduction to this new field.
Although the course will be primarily mathematical, applications will also be emphasized.



Graduate students in sciences and engineering are encouraged participate.

Prerequisites: A good knowledge of linear algebra, analysis, introductory probability and
basic programming skills are essential. Some knowledge of functional analysis is useful but
not necessary.

Textbook: No textbook is required. Lecture notes will be made available.

References:

1. E. J. Cand‘es, An Introduction to compressive sensing. IEEE Signal Process. Mag.
25(2):21-30, 2008.

2. E. J. Cand‘es, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inform.
Theory, 52(2):489509, 2006.

3. D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):12891306,
2006.

4. Y. Eldar and G. Kutyniok, Compressed Sensing. Cambridge, 2012.

5. M. Fornasier and H. Rauhut. Compressive sensing. Handbook of Mathematical Meth-
ods in Imaging, p.187-228. Springer, 2011.

SPARSE AND STRUCTURED MATRIX ANALYSIS (MA 69200)
Instructor: Jianlin Xia (xiaj@math.purdue.edu, 4-1922

Course Numer: MA 69200
Credits:

Time: 1:30-2:45PM TTh

Description

This course includes advanced sparse and structured matrix analysis and computations.
Classical structured solvers for large matrices are reviewed. Topics related to the error
and stability analysis, randomization, fast discretized PDE solutions, etc. are discussed
in detail. The generalizations and applications to imaging and engineering areas are also
included.

Text: Lecture notes, handouts, slides, and research papers.

References

1. Steffen Boerm, Efficient Numerical Methods for Non-Local operators, H2-matrix com-
pression, algorithms and analysis, European Mathematical Society, 2010.

2. Iain Duff, Direct Methods for Sparse Matrices, Clarendon Press

3. Gene Golub and Charles Van Loan, Matrix Computations, 4th edition, John Hopkins.

Prerequisite: Numerical linear algebra or similar, MA 514, CS 515, or consent of instruc-



tor.

INTRODUCTION TO THE GINZBURG-LANDAU EQUATION
Instructor: Prof. Dan Phillips (phillips@math.purdue.edu, 4-1939)

Course Number: MA 69400 CRN: 63579
Credits: Three

Time: 9:30 a.m.–10:20a.m. MWF

Description

This course gives an introductory development for the study in two dimensions of stationary
solutions to the complex valued Ginzburg-Landau equation. The course prerequisite is
MATH 642, however the course will be self contained beyond this. We will study the
limiting structure for a family of solutions depending on a small parameter consisting
of quantized vortices or defects where we will be able to determine their location and
characterize their nature. The theory has a number of important applications in physics
and illustrates an interesting interplay between analysis, geometry, and topology.

Prerequisite: MA 54400 or instructor’s consent.

References

1 F. Bethuel, H. Brezis, and F. Helein, Ginzburg-Landau Vortices, Birkhauser, 1994.

2 E. Sandier and S. Serfaty, Vortices In The Magnetic Ginzburg-Landau Model,
Birkhauser, 2007.

GROUP ACTIONS, TORIC VARIETIES AND BIRATIONAL GEOMETRY
Instructor: Prof. Jaroslaw Wlodarczyk (wlodar@math.purdue.edu, 6-7414)

Course Number 69600 CRN: 63581
Credits: 3

Time: TTh 12:00pm-1:15pm

Description

The purpose of this course is to give a survey on various techniques used in birational
geometry and its interactions with invariant theory and toric geometry.

-We will introduce C∗-actions and show their verious applications. We will prove a funda-
mental Bialynicki-Birula theorem on decomposition of varieties , which allows to decompose
the varieties into cells.

-We will discuss Weil conjectures and virtual Poincare polynomials. We compute coho-
mologies of various varieties using B-B decomposition and Poincare polynomials.

-We will inroduce birational cobordisms (techniques inspired by topological cobordisms
and Morse theory),. We will discuss moment maps tor toric actions as an analogue of
Morse function.



- In the course we introduce and discuss the theory of toric varieties as the illustration
of the above mentioned techniques with particular emphasis Morelli cobordisms and C∗

-actions, on Mori theory, Moment maps and theory of valuations.

- One of the main goals will be the the sketch of a proof of the Weak Factorization Theorem
which states that any birational map between smooth projective varieties is a composition
of blow-ups and blow-downs along smooth centers. The focus of this course is to give an
intuition about the interplay of different areas of algebraic geometry.

Prerequisite: Basic knowledge about algebraic geometry (like R.Hartshorne ’Algebraic
Geometry’ Chapter I or similar).

Main texts:

Bialynicki-Birula, Some theorems on group actions.

Michel Brion, Emmanuel Peyre The virtual Poincare polynomials of homogeneous spaces

Igor Dolgachev, Lectures on Invariant Theory

W. Fulton, Introduction to Toric Varieties, Annals of Math. Studies 131,

Jerzy Konarski, The B-B decomposition via Sumihiro Theorem

Kenji Matsuki, Introduction to Mori Theory

Tadao Oda, Convex bodies and Toric Varieties

J. Wlodarczyk Algebraic Morse Theory and Factorization of Birational Maps.

J.Wisniewski Toric Mori Theory and Fano Manifolds.pdf.

Tentative contents of the course.

Final exam project information.



CURVATURE DIMENSION INEQUALITIES
IN RIEMANNIAN AND SUB-RIEMANNIAN GEOMETRY
Instructor: Prof. Fabrice Baudoin (fbaudoin@math.purdue.edu, 4-1406)

Course Number: MA 69600 CRN: 66073
Credits: Three

Time: 11:30 a.m.–12:20 p.m. MWF

Description

This course will be an introduction to the theory of curvature dimension inequalities. We
will present the tools from the theory of semigroups that can be used to study the geometry
of Riemannian or sub-Riemannian manifolds. We will cover the following topics

1. The Laplace-Beltrami operator on a Riemannian manifold, Bochners formula;

2. The heat semigroup on a Riemannian manifold;

3. Li-Yau type inequalities and Harnack estimates;

4. The heat kernel proof of Bonnet-Myers theorem;

5. Sub-Riemannian manifolds with transverse symmetries;

6. Sub-Riemannian Li-Yau inequalities;

7. Open problems and recent developments: Geometric analysis of contact manifolds.

Lecture notes will be posted on my blog http://fabricebaudoin.wordpress.com/

Prerequisites: Very basic Riemannian geometry: The most important tools will be
reminded at the beginning of the class.


