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Mathematics Department
Spring, 2002

MA 545: Functions of Several Variables and Related Topics
Instructor: Prof. R. Bañuelos, office: Math 608, phone: 49-41977, e-mail: banuelos@math.purdue.edu
Time: MWF 9:30
Prerequisites: Math 544. However, we will review, depending on the need, some of the topics from the last few
weeks of 544 including differentiation of monotone functions, the Radon-Nikodym theorem, duality of Lp spaces, and
Fubini’s theorem.
Description: This course will cover some of the basic tools of analysis which are useful in several areas of math-
ematics including PDE’s, stochastic analysis, modern harmonic analysis and complex analysis. Topics include: The
Hardy–Littlewood maximal function; convolutions; approximations to the identity and their applications to density
theorems in Lp(Rn) and to the basic boundary value problems in the the upper half space of Rn (the Dirichlet problem
for the heat equation and the Laplacian with Lp–data); the Fourier transform and its basic properties on L1 and L2

(including Plancherel’s theorem); interpolation of linear operators; basic singular integral theory and its applications
to the Beltrami equation and to the Cauchy Riemann equations in several dimensions; Sobolev inequalities. Along the
way we will develop some of the basic tools of Littlewood–Paley theory and prove the Calderón reproducing formula
which is very useful in the theory of wavelets.
Text: The students enrolled in this course will receive a free copy of my book, “Lecture Notes: A Second Semester
Course in Analysis.”
Other References: 1. E. H. Lieb and M. Loss, “Analysis.”
2. E. M. Stein, “Singular Integrals and Differentiability Properties of Functions.”

MA 572: Introduction to Algebraic Topology
Instructor: Prof. J. McClure, office: Math 714, phone: 49-42719, e-mail: mcclure@math.purdue.edu
Time: MWF 1:30
Prerequisites: Basic point-set topology, up to compactness and connectedness. Some knowledge of the fundamental
group is also desirable.
Description: This spring I will be teaching MA 572 (Introduction to Algebraic Topology) in a way which is designed
to be useful for students in other fields, especially algebraic geometry, commutative algebra, and several complex
variables. The first part of the course will be about line integrals in open subsets of the plane and their paths of
integration.
Text: 1. Fulton, Algebraic Toploogy.
2. Greenberg and Harper, Algebraic Topology: A First Course.

MA 586: Mathematical Logic II
Instructor: Prof. O. De la Cruz, office: Math 446, phone: 49-47912, e-mail: odlc@math.purdue.edu
Time: TTh 9:00 - 10:15
Prerequisites: MA 585
Description: This course will be run as a seminar, covering several points which complement the material in MA
585. The grade will be based on class participation and the presentation of at least one topic in class.

A few of the topics that might be covered include: Some techniques in “classical” Model Theory; linear, tempo-
ral, many–valued, non-monotonic or modal logics; Chaitin’s information–theoretical approach to incompleteness; and
more. The final choice of topics will depend on the students’ and my interests.

MA 598A: Homotopy Theory
Instructor: Prof. J. Smith, office: Math 720, phone: 49-47910, e-mail: jhs@math.purdue.edu
Time: MWF 1:30
Prerequisites: Math 572 and some basic algebra.
Description: Homotopy theory begins with a definition: a homotopy is a one parameter family of maps. Homo-
topy defines an equivalence relation on the set of continuous maps. Like Janus, Homotopy Theory has two faces,
an inward face that studies the homotopy equivalence classes of maps between spaces and and outward face that
finds applications of homotopy theory in other areas of mathematics. MA 598A will be run as a seminar. Students
will be introduced to methods for understanding homotopy classes and to the many applications of Homotopy Theory.

Advanced Graduate Courses offered by the Mathematics Department, Spring, 2002 — page 1



MA 598D: Numerical Partial Differential Equations
Instructor: Prof. Santos, office: Math 808, phone: 49-41925, e-mail: santos@math.purdue.edu
Time: TTh 3:00-4:15
Prerequisite: MA 523 or consent of instructor
Description: The objective of the course is to teach the methodology for developing efficient and accurate algo-
rithms for the numerical solution of partial differential equations in problems arising in applied mathematics, physics,
geophysics and engineering.

The course will begin with polynomial approximation theory in Sobolev spaces. Then the theory and application of
mixed finite element method for the solution of second order elliptic and parabolic problems will be covered, including
the computer implementation of the algorithms to simulate flow in porous media.

Iterative procedures for the numerical simulation of waves in dispersive media and the approximate solution of
Maxwell’s equations as well as the associated inverse problems will be covered at the discretion of the instrutcor and
depending on time limitations.
Reference Textbooks: 1. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer, 1994.
2. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1980.

MA/STAT 598E: Computational Financial Mathematics II
Instructor: Prof. S. Stojanovic, office: Math 427, phone: 49-41957, e-mail: stojanov@math.purdue.edu
Time: TTh 12:00-1:15 & 1:30-2:45, Weeks 1 – 7.5 only (January 7th through February 27th)
Prerequisites: MA & STAT 598D Computational Financial Mathematics I (or equivalent knowledge in Mathematica
programming and financial mathematics)
Syllabus: Fast numerical solutions of Black-Scholes and Dupire PDE’s; implied volatility of European options via
optimal control of PDE’s; American options: optimal stopping, free boundary problems, symbolic and fast numerical
solutions of obstacle problems; implied volatility for American options via optimal control of obstacle problems; opti-
mal portfolio rules: stochastic control with and without constraints, Hamilton-Jacobi-Bellman PDE’s, Monge-Ampere
type PDE’s, symbolic solutions.
Teaching Style: Sophisticated theories are presented in a practical style, which with the help of the programming
capabilities of Mathematica, help the students develop good intuition about the real trading of stocks and options, as
well as about the wide variety of mathematics involved.
Text: S. Stojanovic, Computational Financial Mathematics using Mathematica, Purdue University Preprint, August
2001; to be published by Birkhauser, Boston, 2002, ISBN 0-8176-4197-1

MA 598F: Mathematics of Finance
Time: TTh 10:30-11:45
Prerequisites: MA 519 (or equivalent) + MA 261 (or equivalent) + MA 440 (or equivalent); or consent of the
instructor.
Description: We will provide an introduction to the mathematical tools and techniques of modern finance theory,
in the context of Black-Scholes-style option pricing. The typical (pricing) question is: how much should you charge
someone for allowing them the right to purchase a certain stock from you at a given price and given time in the
future? The typical (Black-Scholes) assumption is that the differential of the (log of the) stock price is the sum of
a constant term (r.dt, constant interest rate) and a random noise term (dW(t), a Brownian increment). Under this
assumption, to answer the pricing question, the main mathematical tool is stochastic calculus and its connection to
partial differential equations. These mathematics will be the object of a thorough introduction at an elementary level,
without measure theory. This toolbag will enable us to derive the main pricing and hedging results in complete and
incomplete markets, and to treat many examples of exotic and path-dependent options, as well as an introduction to
stochastic optimal control and portfolio optimization.
Text: T. Bjork, Arbitrage Pricing in Continuous Time, Oxford, 1998.
Suggested additional reading: D. Lambertson and B. Lapeyre, Stochastic Calculus applied to Finance, Chapman and
Hall/CRC, 1996, reprinted 2000 by CRC Press.; P. Wilmott, S. Howison, J. Dewynne, The mathematics of financial
derivatives. A student introduction. Cambridge U.P. 1995. Chapters 11 to 16.
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MA 598G: Advanced Probability and Options, with Numerical Methods
Instructor: Prof. F. Viens, office: Math 504, phone: 49-46035, e-mail: viens@stat.purdue.edu
Time: TTh 9:00-10:15
Prerequisites: Those who have not had MA 598 F as a prerequisite can still hope to enroll in the course by providing
evidence of basic preparation in stochastic calculus, and by reading the material of the first 10 chapters of the textbook
by Bjork, before class begins in January. Several students in the past have succesfully achieved this preparation.
Description: This is the second course in a two-course sequence on the mathematics of finance, and especially on
option pricing. The material will be divided in two parts. First, we will cover theoretical issues regarding: (i) Interest
rate term structure models; (ii) American options and stochastic optimal stopping; (iii) finite difference methods. Then
we will examine in detail the numerical methods used to solve the partial differential equations and inequalities that
determine the prices of options, including the Binomial, Monte-Carlo, and finite difference methods.

MA 611: Methods of Applied Mathematics I
Instructor: Prof. A. SaBarreto, office: Math 604, phone: 49-41965, e-mail: sabarre@math.purdue.edu
Time: MWF 11:30
Prerequisites: MA 511 or equivalent and MA 544.
Description: Banach and Hilbert spaces; linear operators; spectral theory of compact linear operators; applications
to linear integral equations and to regular Sturm-Liouville problems for ordinary differential equations.

MA 631: Several Complex Variables
Instructor: Prof. L. Lempert, office: Math 734, phone: 49-41952, e-mail: lempert@math.purdue.edu
Time: TTh 1:30-2:45
Prerequisites: MA 530
Description: Power series, holomorphic functions, representation by integrals, extension of functions, holomorphi-
cally convex domains. Local theory of analytic sets (Weierstrass preparation theorem and consequnces). Functions
and sets in the projective space Pn (theorems of Weierstrass and Chow and their extensions).

MA 639: Stochastic Processes II
Instructor: Prof. J. Ma, office: Math 620, phone: 49-41973, e-mail: majin@math.purdue.edu
Time: TTh 10:30-11:45
Prerequisites:
Description: This is the second part of the two-semester course (the first part was MA638 offered in Fall 2001).
In this part I will mainly focus on the theory of stochastic differential equations and their applications in stochastic
control and mathematical finance.

Detailed topics include:
A. Martingale theory and stochastic integrations: Brownian motion and Brownian filtrations, stochastic integration

(for general martingales), Ito’s formula(s), Martingale representation theorem, Girsanov transformations,...
B. Stochastic differential equations: general theory on stochastic differential equations, strong solutions, weak solu-

tions, backward stochastic differential equations,...
C. (optional) Applications of stochastic differential equations: basics in stochastic control, linear and nonlinear

filtering, finance,...
This course will provide a solid foundation and many necessary tools for further study in various directions of

stochastic analysis.

MA 643: Methods of Linear and Nonlinear Partial Differential Equations II
Instructor: Prof. N. Garofalo, office: Math 616, phone: 49-41971, e-mail: garofalo@math.purdue.edu
Time: TTh 10:30-11:45
Description: This course will be a continuation of MA 642, only in the sense that the material covered in the Fall
semester constitutes a useful exposure to some of the tools and ideas used in pde’s. In reality, the course will have
a self-contained character, and can be profitably attended also by students who have not taken MA 642 in the Fall,
provided that they are willing to make a serious effort. We will continue the study of some of the main trends in pde’s
of the second order, with special emphasis on topics which lie at the interface of classical analysis and geometry. Top-
ics to be covered are Lp theory for solutions of elliptic equations, including Moser’s estimates, Alexandrov maximum
principle, and the Calderon-Zygmund theory. We will discuss the Yamabe problem, its solution, and its ramifications.
We will also give an introduction to the theory of minimal surfaces and generalized perimeters, and present some of
the basic results in this subject.
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MA 661: Modern Differential Geometry
Instructor: Prof. L. Tong, office: Math 748, phone: 49-43173, e-mail: tong@math.purdue.edu
Time: MWF 10:30
Prerequisites: Some knowledge of manifolds and topology such as those in MA 562 and 572.
Description: The following topics will be discussed in this course: the theory of characteristic classes and equivariant
cohomology based on differential forms, various types of index theorems and localization techniques. The subject
matters are of interest to students in algebraic geometry as well as in differential geometry.

MA 690A: Topics in Algebraic Geometry
Instructor: Prof. S. Abhyankar, office: Math 600, phone: 49-41933, e-mail: ram@math.purdue.edu
Time: TTh 3:00-4:15
Description: Various topics of current interest will be discussed. First meeting will be on January 29.

MA 690B: Topics in Commutative Algebra
Instructor: Prof. W. Heinzer, office: Math 636, phone: 49-41980, e-mail: heinzer@math.purdue.edu
Time: MWF 12:30
Description: A continuation of MA 690B from Fall, 2001 semester.

MA 690C: Graded Free Resolutions
Instructor: Prof. I. Peeva, office: Math 848, phone: 49-41923, e-mail: ipeeva@math.purdue.edu
Time: MWF 2:30
Prerequisites: A course in Commutative Algebra
Description: The structure of a finitely generated module T over a commutative noetherian ring R can be described
by a free resolution. The idea to associate a free resolution to T was introduced in a paper of Hilbert; he proved that
if R is a polynomial ring, then any finitely generated R-module has a finite free resolution. In essence constructing a
free resolution consists of solving systems of R-linear equations.

The course will cover material concerning the following topics:
1) an introduction to the basic properties of graded free resolutions
2) resolutions of semigroup (toric) ideals
3) resolutions of monomial ideals
4) resolutions over complete intersections.

MA 690E: Sheaf Theoretical Methods in Algebraic Geometry
Instructor: Prof. D. Arapura, office: Math 642, phone: 49-41983, e-mail: dvb@math.purdue.edu
Time: TTh 12:00-1:15
Description: In this course I plan to introduce sheaf theoretical methods including sheaf cohomology. My emphasis
will be on the application of these ideas to algebraic geometry, however I will try to do things such as the de Rham
theorem, which would be of interest to others. So if anyone wants to sit in for the first few weeks, that’s fine with me.
Eventually knowledge of the basic theory of algebraic varieties will be necessary. I’m not going to assume any prior
knowledge of homological algebra or algebraic topology (although it certainly wouldn’t hurt).

MA 693B: Scattering Theory
Instructor: Prof. L. de Branges, office: Math 800, phone: 49-46057, e-mail: branges@math.purdue.edu
Time: MWF 10:30
Description: This course in linear and complex analysis is concerned with the invariant subspaces of continuous
and contractive transformations in Krein spaces which have contractive adjoints. A canonical model of a transfor-
mation is constructed in a Krein space whose elements are power series with coefficients in a Hilbert space. The
space is characterized as the state space of a canonical conjugate isometric linear system. A construction is made of
canonical conjugate isometric linear systems with given transfer function. The transfer function is assumed to be a
power series with operator coefficients which defines a Toeplitz multiplication in the space of square summable power
series with coefficients in a Hilbert space. The multiplication is not assumed to be everywhere defined and bounded.
The main transformation admits an invariant subspace which is a Hilbert space and whose orthogonal complement
is the anti-space of a Hilbert space. Factorizations of transfer functions result from invariant subspaces of the main
transformation. The converse construction of invariant subspaces from factorizations is of interest when the state
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space is a Hilbert space. The existence of a nontrivial proper closed invariant subspace is obtained for a contractive
transformation of a Hlbert space into itself which is not a scalar multiple of the identity transformation. A close
relationship to the Nevanlinna factorization theory for functions which are meromorphic and of bounded type in the
unit disk is found when the coefficient space is one-dimensional. Applications are given to the estimation theroy of
functions which are analytic and injective in the unit disk and which have a fixed point at the origin. Students are
expected to have the mathematical maturity which ususally results from a course in functional analysis (MA 546).

MA 693D: Infinite Discrete Groups
Instructor: Prof. M. Dadarlat, office: Math 708, phone: 49-41940, e-mail: mdd@math.purdue.edu
Time: MWF 1:30
Prerequisites: Some prior exposure to real analysis and/or functional analysis would be certainly helpful but not
absolutely necessary.
Description: This will be an introduction to analysis on groups and geometric group theory. For the sake of simplic-
ity, we will focus mainly on discrete groups. Topics include: elementary group representation theory, amenability and
other growth conditions, groups with property T of Kazhdan and their applications. If time permits we may discuss
certain invariants such as the `2 Betti numbers and the K-theory of group algebras.

MA 693E: Potential Theory
Instructor: Prof. A. Eremenko, office: Math 612, phone: 49-41975, e-mail: eremenko@math.purdue.edu
Time: TTh 9:00-10:15
Prerequisites: Complex Analysis (MA 530) and Measure Theory (MA 544).
Description: Potential theory is one of the major areas of analysis. Classical Potential Theory (= Laplace and
Poisson equations, Newtonian and Logarithmic potentials) originates in Mathematical physics, namely in problems
of gravity and electrostatics. As it frequently happens with theories coming from physics, potential theory and its
generalizations became indispensible powerful tools in almost all parts of Analysis, including the theory of analytic
functions (of one and several complex variables), PDE, Probability, Approximation theory and Holomorphic Dynamics.

The purpose of the course is to introduce the basic notions and facts about subharmonic functions, Newtonian
and Logarithmic potentials, to lay a necessary basis for further study of advanced modern generalizations such as
nonlinear potential theory and pluripotential theory. Some applications of this classical theory will be also discussed
including the recent ones in holomorphic dynamics.

Contents:
1. Review of harmonic functions
2. Electrostatics
3. Energy
4. Equilibrium distributions
5. Dirichlet’s Problem and Green’s Function. Capacity
6. Subharmonic functions
7. Riesz Representation Theorem
8. Symmetrization and extremal problems
9. Uniform Approximation

10. Applications to Banch Algebras
11. Applications to Holomorphic dynamics.

Recommended literature: 1. Th. Ransford, Potential theory in the complex plane (main text).
2. J. Wermer, Potential Theory.
3. L. Hormander, Notions of Convexity.
4. M. Brelot, Elements de la theorie du potentiel.
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