
Introduction to Partial Differential Equations

Instructor: Harold Donnelly

Course Number: MA52300

Credits: Three

Time: MWF 12:30 P.M.

Description

Integral curves and surfaces of vector fields, theory of quasi–linear and linear equations of first order,

linear partial differential equations, characteristics, classification and canonical forms, equations of

mathematical physics, Laplace’s equation, wave equation, heat equation.

Text, E.C. Zachmanoglou and D.W. Thoe, Introduction to Partial Differential Equations, Dover,

1986.

Complex Analysis

Instructor: Louis de Branges

Course Number: MA53100

Credits: Three

MWF 9:30–10:20 A.M.

Description

This second course in complex analysis presumes a knowledge of MATH 53000 or the equivalent

from the text of Lars Ahlfors. The aim of the course is the application of complex analysis to

Fourier analysis. Fourier analysis is formulated in locally compact abelian groups by Lynn Loomis

in ABSTRACT HARMONIC ANALYSIS. The present treatment applies to locally compact skew–

fields as they appear in a proof of the Riemann hypothesis (preprint). This requires an introduction

to algebraic number fields as in van der Waerden MODERN ALGEBRA. Skew–fields are algebras

of quarternions with coordinates in a real algebraic number field. Quarternions with real numbers

as coordinates create a pattern for generalization. Topics covered are the Laplace transformation

and the Mellin transformation in relation to the Fourier transformation.

Ordinary Differential Equations and Dynamical Systems

Instructor: Aaron Yip

Course Number: MA54300

Credits: Three

Time: TTh 1:30–2:45 P.M.

Description

This is a beginning graduate level course on ordinary differential equations. It covers basic results

for linear systems, local theory for nonlinear systems (existence and uniqueness, dependence on

parameters, flows and linearization, stable manifold theorem) and their global theory (global ex-

istence, limit sets and periodic orbits, Poincare maps). Some further topics include bifurcations,

averaging techniques and applications to mechanics and population dynamics.



Prerequisites: one undergraduate course in each of the following topics: linear algebra (for example,

MA 265, 351), differential equation (for example, MA 266, 366), analysis (for example, MA 341,

440, 504), or instructor’s consent.

Textbook: Perko: Differential Equations and Dynamical Systems (available online from Purdue)

Mathematical Continuum Physics

Instructor: John H. Cushman

Course Number: MA 598/EAPS 591

Credits: Three

Time: TTh 1:30 P.M.

Description

Lagrangian and Eulerian coordinate system representations are employed throughout all devel-

opments. We begin by constructing the fully non-linear strain tensor and analyze its component?s

physical significance. This is followed by development of the integral, and subsequently local forms,

of conservation of mass, balances of linear and angular momentum and conservation of energy. The

2nd ?law of thermodynamics is postulated for the entire body and employed to develop fully non-

linear constitutive relations which are subsequently linearized near equilibrium for many classes of

fluids and solids. Maxwell?s equations of electrodynamics are introduced, coupled with the con-

servation and balance laws and subjected to the 2nd ? law to obtain generalized field equations.

Averaging principles are employed to obtain the conservation and balance laws for mixtures of

species and phases of relevance to porous media. Applications are presented for swelling biopoly-

mers (foods and cells), drug delivery substrates, geophysical media (soils, aquifers and petroleum

reservoirs), electro-active polymers (soft robotics), and fuel cells (flow batteries). The common

structure of all these examples is highlighted.

Profinite Groups and Group Cohomology

Instructor: Professor Ben McReynolds

Course Number: MA59800

Credits: Three

Time: T Th 10:30-11:45 AM

Description

This course will cover foundational material on the topics of profinite groups, profinite com-

pletions, and cohomology of groups. Some knowledge of groups and some experience with some

cohomology/homology theory would be useful but not necessary. With the remaining lectures, we

may cover Galois cohomology or cohomological dimension. I will let those that attend the class

decide on some finishing topics.

Other: There will be no formal obligations required for the course. I will give some exercises but

they will not be taken up.



Stochastic Calculus

Instructor: Professor Samy Tindel

Course Number: MA59800

Credits: Three

Time: T Th 4:30-5:45 PM

Email: stindel@purdue.edu

Webpage: https://www.math.purdue.edu/∼stindel

Description

The central object of this course is Brownian motion. This stochastic process (denoted by

W = {Wt; t ≥ 0} in the sequel) is used in numerous concrete situations, ranging from engineering

to finance or biology. It is also of crucial interest in probability theory, owing to the fact that this

process is Gaussian, martingale and Markov at the same time. This very rich structure converts

Brownian motion into a fascinating object, but it should also be pointed out that the paths of W

are irregular (in particular nowhere differentiable), as depicted in the figure below. Our first aim

will thus be a good description of Brownian motion. We will then construct a differential calculus

with respect to W . Specifically, our two main tasks will be:
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Figure 1: Three independent Brownian paths

(i) Give a formula for the differential df(Wt) when f is smooth enough. This fundamental

relation is called Itô’s formula.

(ii) Solve differential equations driven by W , of the form dXt = b(Xt) dt +σ(Xt) dWt, and give

elementary properties for their solutions.

(iii) If time constraints allow it, give an introduction to the analysis on Wiener’s space.



Outline of the course

1. Notions of probability theory.

2. Brownian motion.

3. Itô’s formula.

4. Stochastic differential equations.

Bibliography:

1. R. Durrett: Stochastic calculus. A practical introduction. Probability and Stochastics Series.

CRC Press, 1996.

2. I. Karatzas, S. Shreve: Brownian motion and stochastic calculus. Second edition. Graduate

Texts in Mathematics, 113. Springer-Verlag, 1991.

3. D. Revuz, M. Yor: Continuous martingales and Brownian motion. Third edition. Springer-

Verlag, 1999.

Meth Applied Math I

Instructor: Donatella Danielli

Course Number: MA 61100

Credits: Three

Time: MWF 11:30–12:20 P.M.

Description

The purpose of this course is to present the most fundamental theorems of operator theory

and functional analysis, keeping applications in mind. Topics covered will include metric spaces;

Banach spaces; analytic and geometric formulations of the Hahn-Banach theorem; the principle of

uniform boundedness, the closed graph theorem and the open-mapping theorem; weak topologies;

reflexive and separable spaces; Hilbert spaces; compact operators and the Fredholm-Riesz-Schauder

theory; spectral theory for self-adjoint operators. Applications to ordinary and partial differential

equations, as well as to integral equations, will be discussed. If time permits, we will cover the

Hille-Yosida theorem and its applications to evolution equations.

Text: A. Friedman, Foundations of Modern Analysis, Dover

References: H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,

Springer.

Prerequisite: MA 51100 and MA 54400, or instructor’s approval.



Several Complex Variables

Instructor: Laszlo Lempert

Course Number: MA 63100

Credits: Three

Time: MWF 12:30–1:20 P.M.

Description

Power series, holomorphic functions, representation by integrals, extension of functions, holo-

morphically convex domains. The inhomogeneous Cauchy?Riemann equations. Local theory of

holomorphic functions and of analytic sets (Weierstrass preparation theorem and consequences).

Complex manifolds, meromorphic functions, analytic cohomology.

Prerequisite: MA 53000.

Methods of Linear & Nonlinear Partial Differiatial Equations

Instructor: Donatella Danielli

Course Number: MA 64200

Credits: Three

Time: MWF 9:30–10:20 A.M.

Description

This is the first semester of a one-year course in the theory of second order elliptic and parabolic

PDEs. The aim of the course is to study the solvability of boundary value problems and regularity

properties of solutions. The first semester will focus on linear elliptic equations, both in divergence

and nondivergence form. The starting point for the study of classical solutions will be the theory of

Laplace?s and Poisson’s equations. The emphasis here will be on: 1. Existence of solutions to the

Dirichlet problem for harmonic functions via the Perron method (based on the maximum principle);

2. Holder estimates for Poisson’s equation derived from the analysis of the Newtonian potential.

The crowning achievement of the theory of classical solutions is Schauder’s theory, which extends

the results of potential theory to a general class of non-divergence form equations with Holder-

continuous coefficients. In the second part of the semester we will consider a more general - and

modern - approach to linear problems, based not on potential theory, but on Hilbert space methods

for so-called “weak” solutions. Our main goal will be to prove the celebrated De Giorgi-Nash-Moser

theorem on the regularity of weak solutions. The relevant tools from the theory of Sobolev spaces

will be developed concurrently.

Text: D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,

Second Edition, Springer.

Prerequisite: MA 54400 and MA 61100, or instructor’s approval.



Methods Of Linear And Nonlinear Partial Differential Equations II

Instructor: Daniel Phillips

Course Number: MA 64300

Credits: Three

Time: MWF 1:30–2:20 P.M.

Description

This course will be a continuation of MA 642 which included theories for classical solutions

to linear second-order elliptic equations with smooth coefficients and for weak solutions to linear

equations in divergence form with bounded measurable coefficients.

MA 643 builds on these theories and includes introductions to:

1) existence results for solutions to quasi-linear equations,

2) strong solutions for linear second order elliptic equations with bounded measurable coefficients,

3) Galerkin’s method and the continuous semigroup method for parabolic and hyperbolic time

dependent problems,

4) viscosity solutions and fully nonlinear applications.

Modern Differential Geometry

Instructor: Prof. Harold Donnelly

Course Number: MA66100

Credits: Three

Time: MWF 2:30–3:20 pm

Description:

A foundational course in Riemannian geometry. Topics include the Levi–Civita connection,

geodesics, normal coordinates, Jacobi fields. Emphasis on curvature and its relation with topology.

Familiarity with differentiable manifolds, tensor fields, and differential forms is assumed. Text:

John M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer Verlag, 1997

Prerequisite: MA 56200.

Class Field Theory

Instructor: Prof. Edray Goins

Course Number: MA68400

Credits: Three

Time: MWF 1:30–2:20 P.M.

Description:

It was first conjectured by the German mathematician David Hilbert (1862 - 1943) in his 1897

work Zahlbericht (literally ?number report?) that if K is a number field with class number h, then

there exists an extension L of degree h over K such that every ideal of K becomes principal, even

though L itself might not have class number 1. The Japanese mathematician Teiji Takagi (1875 -

1960) proved in 1920 what we now call the Existence Theorem: that is, he showed that the field



L which Hilbert conjectured does indeed exist. This field is now called the Hilbert Class Field.

However, Takagi proved a stronger result: this field is an unramified extension of K such that its

Galois group is abelian, and moreover it is the largest such extension. The Austrian mathematician

Emil Artin (1898 - 1962) extended the results of Takagi in 1923 in his paper Uber eine neue Art

von L-Reihen by considering properties of L-series. (The title translates as ?On a new type of

L-Series.?) This paper relied on existing reciprocity laws. He turned in a different direction in

1927 by using ideas of Russian mathematician Nikolai Grigorievich Cebotarov (1894 - 1947) in a

1924 paper on density of prime ideals in number fields. This new approach proved the existing

reciprocity laws! This result is now called the Artin Reciprocity Theorem.

In this course, we will focus on Class Field Theory from both the classical (i.e., ideal class

group) and modern (i.e., idele class group) points of view. We will study study Quadratic and

Cubic Reciprocity via the Artin automorphism; the Hilbert Class Field via the Artin Reciprocity

Theorem; the Ray Class Field via the Existence Theorem; and then conclude with a discussion of the

modern (i.e. idele class) point of view via adeles and ideles. Topics that will be covered include Ray

Class Group; Special Values of L-Series; Density of Primes; Galois Cohomology; Artin Reciprocity

Theorem; Class Groups and Class Fields; Existence and Classification Theorems; Hilbert Class

Fields; and Extended Class Group.

Prerequisite: MA584

Representation Theory with Applications

Instructor: Prof. Freydoon Shahidi

Course Number: MA69000A

Credits: Three

Time: MWF 9:30–10:20 A.M.

Description

The subjects to be covered:

1. Topics from Fulton-Harris with connections to combinatorics (in connection with the theory

of γ–factors attached to the L–functions of representations of reductive groups and arbitrary

representations of their L–groups via Braverman–Kazhdan/Ngo).

2. Some representation theory of real Lie groups

3. Applications to number theory through automorphic forms and L-functions

Suggested references:

Fulton-Harris, Representation Theory, GTM 129, Springer, 1991.

F. Shahidi, Eisenstein Series and L-functions, AMS Colloquium Publications, Vol. 58, AMS,

2010.

A. Knapp, Representations of Semisimple Groups, Princeton University Press, 1986



Introduction to Kinetic Theory

Instructor: Jingwei Hu

Course Number: MA69200

Credits: Three

Time: T Th 3:00–4:15 P.M.

Description

In multiscale modeling hierarchy, kinetic theory serves as a basic building block that bridges

atomistic and continuum models. It describes the non-equilibrium dynamics of a gas or system

comprised of a large number of particles. On one hand, kinetic descriptions are more efficient

(requiring fewer degrees of freedom) than molecular dynamics; on the other hand, they provide

rich information at the mesoscopic level when the well-known fluid mechanics laws of Navier-Stokes

and Fourier become inadequate, and have proved to be reliable in many fields such as rarefied

gas/plasma dynamics, radiative transfer, semiconductor modeling, or even social and biological

sciences. This course will constitute an introduction to the kinetic theory with the focus on the

Boltzmann equation and related kinetic models. We will discuss basic mathematical theory, nu-

merical methods, and various applications. Specific topics will include: derivation and properties

of the Boltzmann equation (collision integral, conservation laws, H-theorem, etc.), connection to

molecular dynamics, connection to fluid equations, Chapman-Enskog expansion, moment closures,

deterministic numerical methods (e.g., discrete-velocity methods, spectral methods, fast summation

methods), stochastic numerical methods (e.g., direct simulation Monte Carlo methods), asymptotic-

preserving schemes (multiscale methods coupling kinetic and fluid equations). Other possible topics

depending on the interests of the audience: Fokker-Planck-Landau equation for plasmas, quantum

Boltzmann equation for bosons and fermions, inelastic Boltzmann equation for granular media,

multi-species Boltzmann equation for gaseous mixtures, semiconductor Boltzmann equation for

electron transport, kinetic models for collective behavior of swarming and flocking, etc. No text-

book is required. The material will be based on the lecture notes by the instructor, and some

papers and book chapters. No exams. Students are expected to present course-related material in

class or work on small research projects.

Topics in Analysis — von Neumann Algebras

Instructor: Thomas Sinclair

Course Number: MA 693

Credits: Three

Time: MWF 11:30–12:20 P.M.

Description

This course is intended to serve as an introduction to von Neumann algebras, specifically the

theory and classification of II1 factors. The course will also strive to treat some advanced topics,

acquainting students with active research areas and problems within the field. Basic knowledge

of functional analysis will be assumed. The theory of von Neumann algebras was initiated by

Murray and von Neumann in the 1930s and 40s. The last several decades have seen a wealth of

remarkable applications of von Neumann algebras to many other mathematical fields including:

Jones’ theory of subfactors and the discovery of new knot invariants; Voiculescu’s theory of free



probability with connections to the theory of random matrices; Popa’s deformation/rigidity theory

with applications to Mostow-Margulis type superrigidity theorems for ergodic actions of discrete

groups; and connections of work of Connes and Kirchberg with Quantum Information Theory and

violations of Bell’s inequality. Topics covered will include:

A) The basic theory - the spectral theorem; von Neumann’s double commutant theorem; Ka-

planksy’s density theorem; the predual; projections and type classification; construction of the

trace on a II1 factor; group von Neumann algebras; subfactors, the basic construction, and

index; correspondences and approximation properties.

B) Advanced topics (a selection of these) — amenability and Connes’ classification of amenable

factors; Popa’s intertwining theorem and the modern theory of the classification of II1 factors

(2002-present) using Popa’s deformation/rigidity theory; solid von Neumann algebras; basics of

Voiculescu’s free probability theory; Connes’ embedding problem, sofic groups, and Kirchberg’s

conjecture.

Grades: No exams will be given. Optional homework problems will be assigned but will not be

collected. Grades will be determined by active involvement in the course and a short presentation.

Resources:

[1] Zhu, Kehe, An Introduction to Operator Algebras, CRC Press, 1993.

[2] Jones, Vaughan, Von Neumann Algebras, online lecture notes,

http://www.math.berkeley.edu/ vfr/MATH20909/VonNeumann2009.pdf

[3] Peterson, Jesse, Notes on von Neumann Algebras, online lecture notes,

http://www.math.vanderbilt.edu/ peters10/teaching/spring2013/vonNeumannAlgebras.pdf

In addition, many other secondary resources in the form of articles?

Introduction to Microlocal Analysis

Instructor: Professor Plamen Stefanov

Course Number: MA 693

Credits: Three

Time: T Th 4:30-5:45 PM

Description

This course is an introduction to some of the most important topics in Microlocal Analysis. I

will start with a review of distributions, the Fourier Transform and introduction of Wave Front Sets.

Then I will introduce the pseudo-differential operators in an open domain and develop the calculus

of such operators: sums, compositions, adjoints, boundedness in Sobolev spaces, etc. Then I will

show how to build a parametrix of an elliptic operator, and what it is good for: local solvability

of elliptic PDEs, elliptic regularity and Fredholm properties of elliptic operators. The second part

of the course will deal with hyperbolic equations, like the wave equation with variable coefficients.

I will explain the geometric optics construction and that will serve as an example of a Fourier

Integral Operator (FIO) even though the theory of FIOs is beyond the scope of this course. One

of the fundamental results of the theory is Hormander’s theorem of propagation of singularities,

which will be presented in the context of the wave equation first.

Prerequisites for the course are: familiarity with distributions and the Fourier Transform (that

we will review anyway), linear operators in Banach and Hilbert spaces, basic PDE theory.


