QUALIFYING EXAMINATION
AUGUST 2000
MATH 519 - Prof. Studden

All problems have the same point value.

1. The annual number of accidents for an individual driver has a Poisson distribution with mean \(\lambda \). The Poisson means \(\lambda \), of a heterogeneous population of drivers, have a gamma distribution with mean 0.1 and variance 0.01. Calculate the probability that a driver, selected at random from the population, will have 2 or more accidents in one year. The gamma density is given by

\[
f(x) = \frac{1}{\theta^a} e^{-\frac{x}{\theta}} \frac{x^{a-1}}{\Gamma(a)}.
\]

2. Let \(X_n \) be any sequence of random variable such that \(\text{Var}(X_n) \leq c\mu_n \) for some fixed constant \(c \) and \(\mu_n = \text{E}X_n \to \infty \). Show that \(\lim_{n \to \infty} P(X_n > a) = 1 \) for all \(a \).

3. For any random variable \(X \) and \(Y \) determine whether the following are true or false;
 a) \(X \) and \(Y - \text{E}(Y|X) \) are uncorrelated,
 b) \(\text{Var}(Y - \text{E}(Y|X)) = \text{E}(\text{Var}(Y|X)) \),
 c) \(\text{Cov}(X,\text{E}(Y|X)) = \text{Cov}(X,Y) \).

4. An urn contains \(W \) white and \(B \) black balls. Balls are randomly selected without replacement from the urn until \(W \) white balls have been removed. (1 \(\leq W \)).
 a) If \(X \) is the number of black balls that are selected, what is \(P(X=k) \) (\(k = 0, 1, \ldots, B \)).
 b) What is \(\text{E}(X) \)?

5. Let \(S_n = X_1 + \cdots + X_n \) where the \(X_i \) are independent and uniformly distributed on \((0,1)\).
 a) What is the moment generating function of \(S_n \)?
 b) Show that \(f_n(x) = F_{n-1}(x) - F_{n-1}(x-1) \) where \(f_k \) and \(F_k \) are the density and distribution function of \(S_k \) respectively.
 c) Show by induction that

\[
f_n(x) = \frac{1}{(n-1)!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (x-k)^{n-1}.
\]
 d) Obtain the moment generating function of \(S_n \) directly from the density in part c.

6. Let \(X_1, \ldots, X_n \) be independent random variables with common distribution which is uniform on the interval \((-1/2, 1/2)\). Show that the random variables

\[
Z_n = \sqrt{n} \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i^2}
\]

converge in distribution to some random variable \(Z \) and identify the distribution of \(Z \).

7. Let \(X_1, X_2, X_3 \) be independent normal random variables with mean zero and variance one. What is the distribution of

\[
\frac{X_1 + X_2X_3}{\sqrt{1 + X_3^2}}.
\]