MA 519 Introduction to Probability
January 2000, Qualifying Examination

Instructor: Yip

• This qualifying exam contains five questions.
• By all means simplify your answers as much as possible.
• It might be useful to know that for any positive integers m and n,
 \[\int_0^1 x^m (1 - x)^n \, dx = \frac{m! n!}{(m + n + 1)!} \]
• A normal table is provided at the end.

1. There are n people among whom are A and B. They stand in a row randomly. What is the probability that there will be exactly r people between A and B? What is the corresponding probability if they stand in a circular ring? (In this case, consider only the arc going from A to B in the positive (i.e. counter-clockwise) direction.)

2. Consider a large collection of coins such that the probability p of a coin giving a head is itself a random variable which is uniformly distributed in $[0, 1]$. Let X be the total number of heads in n tossing of the coins. Find $P(X = i)$ ($i = 0, 1, \ldots, n$) in the following two situations:
 (a) Pick a coin at random and then toss this coin n times.
 (b) Pick a coin at random for each tossing.

3. Consider a sequence of Bernoulli trials of tossing a coin with p as the probability of giving a head. Let X be the number of trials for the m-th head to occur. Find the moment generating function $M_X(s)$ of X.
 (Note: Given any positive random variable X, its moment generating function $M_X(s)$ is defined as $E(e^{-sX})$.)

4. Let X and Y be two independent, identically and exponentially distributed random variables:
 \[P(X \in (x, x + dx)) = \lambda e^{-\lambda x} \, dx, \quad x \geq 0 \]
 \[P(Y \in (y, y + dy)) = \lambda e^{-\lambda y} \, dy, \quad y \geq 0 \]
 Let $T_1 = \min(X, Y)$, $T_2 = \max(X, Y)$ and $W = T_2 - T_1$.

1
(a) Find the probability density functions of T_1, T_2 and W.
(b) Find the joint probability density function of T_1 and W.
(c) Are T_1 and W independent?

5. There are 100 light bulbs whose lifetimes T’s are independent exponentials with mean 5 hours (i.e. the probability density function of T is $\frac{1}{5} e^{-\frac{t}{5}}$ for $t \geq 0$). If the bulbs are used one at a time, with a failed bulb being replaced immediately by a new one. In addition, it takes a random time, uniformly distributed over $(0, 0.5)$ to replace a failed bulb. Approximate the probability that all bulbs have failed by time 550?