MATHEMATICS QUALIFYING EXAMINATION
JANUARY 2007
MATH 519 - Prof. Sellke

Each problem is worth 20 points.

1. Twelve dots are arranged in four rows, with three dots in each row. Randomly choose four of the twelve dots. Let N be the number of rows with no chosen dot. Find the mean and variance of N.

2. Let X_1 and X_2 be random variables with joint density
$$f_{X}(x_1, x_2) = \begin{cases}
3x_1 & \text{if } 0 < x_2 < x_1 < 1 \\
0 & \text{else}
\end{cases}$$

Let $Y_1 = \frac{1}{X_1}$ and $Y_2 = \frac{1}{X_2}$. Find the joint density $f_{Y}(y_1, y_2)$ of Y_1 and Y_2.

3. Suppose that a solution now contains a single living bacterium. This organism has the property that, after 24 hours, it will give rise to a random number N_1 of descendants with a Geometric(p) “number of failures” distribution:
$$P\{N_1 = k\} = q^k p, \quad k = 0, 1, 2, \ldots$$

with $p \in (0, 1)$ and $q = 1 - p$ and $EN_1 = \frac{q}{p}$. (So, N_1 is the population size after 24 hours.) Furthermore, each bacterium present in 24 hours will give rise after another 24 hours to a random number of descendants with the same Geometric(p) “number of failures” distribution, with different bacteria having independent numbers of descendants.

Let N_2 be the population size 48 hours from now. Find $E(N_1 | N_2 = 0)$.

(Hint: The maximum value of this quantity as p varies between 0 and 1 is $\frac{1}{3}$.)

4. Let X and Y be independent standard normal (i.e., $N(0, 1)$) random variables. Find $P\{3X^2 < Y^2\}$.

5. Let U_1, U_2, \ldots, U_n be iid $U[0, 1]$ random variables, with order statistics
$$0 \leq U_{(1)} \leq U_{(2)} \leq \cdots U_{(n)} \leq 1.$$ For $k = 1, 2, \ldots, n + 1$, let $G_k = U_{(k)} - U_{(k-1)}$ be the length of the k^{th} “gap” (where we set $U_{(0)} = 0$ and $U_{(n+1)} = 1$). Let
$$L_n = \max\{G_k, \quad 1 \leq k \leq n + 1\}$$
be the length of the largest gap.

When \(n = 10^{43} \), the median of the random variable \(L_n \) is approximately an integer power of \(\frac{1}{10} \), so that

\[
\text{median}(L_{10^{43}}) \approx 10^{-j}
\]

for some integer \(j \).

Find \(j \), and justify your answer. (Heuristic reasoning is fine.)