1. (10 points) Suppose X is $N(0, 1)$ (i.e., standard normal) and $Y \mid X = x$ is $N(x + 1, 1)$.

 (a) (3 points) Find the marginal distribution of Y.

 (b) (4 points) Find the correlation between X and Y.

 (c) (3 points) Find $E[X \mid Y = y]$.

2. (10 points) Let X and Y be independent standard exponential rv’s, with density $f(t) = e^{-t}, t \geq 0$. Let $U = \exp(X^2 - Y)$ and $V = \exp(Y^2 - X)$. Find the value at $(1, 1)$ of the continuous joint density of U and V.

3. (10 points) A one dimensional nonhomogeneous Poisson process has the intensity (rate) function $\lambda(t) = ct$, where c is a positive constant. Find the density of the nth arrival time for a general integer $n \geq 1$.

4. (10 points) A man has had much too much to drink, but is still strong enough to walk and to see where he is trying to go. He starts at the origin in \mathbb{R}^2. He takes iid steps, each step equally likely to be "up", "down", or "right", always of length 1: in other words, the three steps $(0, 1)$, $(0, -1)$, and $(1, 0)$ are of probability 1/3 each. At the first time that his horizontal position equals 100, what is the approximate numerical probability that his vertical position is greater than or equal to 10?

5. (10 points) Let X_1, \ldots, X_5 and Y_1, \ldots, Y_5 be independent $N(0, 1)$ (i.e., standard normal) random variables. Consider the 5 points in \mathbb{R}^2 with coordinates $(X_k, Y_k), 1 \leq k \leq 5$. Let $D_1 < D_2 < \cdots < D_5$ be the ordered distances of those 5 points to the origin. Find the joint density of D_1 and D_2.