1. Consider the initial value problem
\[\begin{align*}
zz_x + z_y &= z \\
z(x, 0) &= 3x
\end{align*} \]
(a) Use an existence and uniqueness theorem to show that the problem has a unique solution in a neighborhood of every point of the initial curve \(y = 0 \).
(b) Solve the problem.

2. Let \(\Omega \) be a domain in \(\mathbb{R}^3 \) and \(\vec{V} = (P, Q, R) \) be a nonvanishing \(C^1 \) vector field in \(\Omega \). Suppose that \(u \in C^1(\Omega) \), \(\text{grad } u \neq \vec{0} \) in \(\Omega \), and that the level surfaces of \(u \),
\[u(x, y, z) = c, \]
are the integral surfaces of \(\vec{V} \) in \(\Omega \). Prove that if \(C \) is the integral curve of \(\vec{V} \) passing through \((x_0, y_0, z_0) \in \Omega \), then \(C \) must lie on the integral surface of \(\vec{V} \) passing through \((x_0, y_0, z_0) \).

3. Prove uniqueness of solution of the initial-boundary value problem
\[\begin{align*}
u_{xx} - u_{tt} - au_t - bu &= F(x, t); \quad 0 < x < L, \quad 0 \leq t \\
u(x, 0) &= \varphi(x), \quad u_t(x, 0) = \psi(x); \quad 0 \leq x \leq L \\
u(0, t) &= f(t), \quad u_x(L, t) = g(t); \quad 0 \leq t
\end{align*} \]
where \(a \) and \(b \) are nonnegative constants, and \(F, \varphi, \psi, f, \) and \(g \) are sufficiently smooth functions. Assume that \(u(x, t) \) is \(C^2 \) for \(0 \leq x \leq L \) and \(0 \leq t \).

4. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^3 \) with smooth boundary \(\partial \Omega \) and let \(\vec{n} \) be the exterior unit normal vector on \(\partial \Omega \).
(a) Define carefully the Green’s function \(G(\vec{r}', \vec{r}) \) for the Dirichlet problem for \(\Omega \).
(b) Write down the formula for the solution of the Dirichlet problem
\[\begin{align*}
\nabla^2 u &= 0 \quad \text{in } \Omega \\
u &= f \quad \text{on } \partial \Omega
\end{align*} \]
in terms of the Green’s function.
(c) Show that for each fixed \(\vec{r} \) in \(\Omega \), \(\frac{\partial}{\partial n} G(\vec{r}', \vec{r}) \leq 0 \), for \(\vec{r}' \in \partial \Omega \).
(d) Show that for each \(\vec{r} \in \Omega \),
\[- \int_{\partial \Omega} \frac{\partial}{\partial n} G(\vec{r}', \vec{r})d\sigma = 1.\]
5. Consider the initial-boundary value problem for the heat equation,

\[u_t - u_{xx} = 0; \quad 0 < x < L, \quad 0 < t \]
\[u_x(0, t) = u_x(L, t) = 0; \quad 0 \leq t \]
\[u(x, 0) = \begin{cases} 0 & \text{for } 0 \leq x < \frac{L}{2} \\ 100 & \text{for } \frac{L}{2} \leq x \leq L \end{cases} \]

(a) Find the series solution of the problem.
(b) Does the series solution converge uniformly when \(t = 0 \)? Explain.
(c) Prove that the solution is \(C^\infty \) when \(t > 0 \).

6. For each of the PDEs below, construct a solution which is in \(C^2(\mathbb{R}^3) \) but not in \(C^3(\mathbb{R}^3) \). If this is not possible, explain why.

(a) \(u_{xx} + u_{yy} - u_{zz} = 0, \quad (x, y, z) \in \mathbb{R}^3 \)
(b) \(u_{xx} + u_{yy} + u_{zz} = 0, \quad (x, y, z) \in \mathbb{R}^3 \)
(c) \(u_{xx} + u_{yy} - u_z = 0, \quad (x, y, z) \in \mathbb{R}^3 \)

7. Consider the linear first order PDE in two variables,

\[a(x, y)u_x + b(x, y)u_y = 0 \]

where \(a \) and \(b \) are \(C^1 \) and do not vanish simultaneously. Prove that if \(C \) is a characteristic curve of the PDE, then a solution \(u(x, y) \) of the PDE must be constant on \(C \).

8. State carefully the theorem on the domain of dependence inequality for the wave equation in two space variables,

\[u_{xx} + u_{yy} - u_{tt} = 0. \]