1. Find the solution to the Cauchy problem
\[yu_x - xu_y = 2xyu, \quad u|_{x=y} = x^2. \]

2. Consider the Cauchy problem
\[u_{tt} - u_{tx} - 2u_{xx} + xu_t + 5u = 0 \]
\[u|_{\gamma} = e^x, \quad u|_{\gamma} = 3 - 2x, \]
where \(\gamma \) is the curve \(t = 1 - \cos x \) in the \(xt \) plane.

 (a) Is there a solution of this problem near \((0, 0) \)? Why? What is the regularity of the solution?

 (b) Find the truncated Taylor expansion of \(u(x, t) \) of order 2 near the point \((0, 0) \) (i.e., find the quadratic approximation \(u_2 \) of \(u \) near \((0, 0) \) such that \(u(x, t) = u_2(x, t) + O(|x|^3 + |t|^3)) \).

3. Find an explicit solution \(u(x, y) \) to the following problem
\[
\begin{align*}
 &u_{xx} + u_{yy} = 0 \quad \text{for } 1 < x^2 + y^2 < 4, \\
 &u = x \quad \text{for } x^2 + y^2 = 1, \\
 &u = 1 + xy \quad \text{for } x^2 + y^2 = 4.
\end{align*}
\]

4. Find an explicit solution to the problem
\[
\begin{align*}
 &u_t - u_{xx} = 0, \quad 0 < t, \quad x \in \mathbb{R}, \\
 &u|_{t=0} = e^{3x}, \quad x \in \mathbb{R}
\end{align*}
\]

5. Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain with smooth boundary. Let \(u_1 \in C^1(\overline{\Omega}) \) be harmonic in \(\Omega \), and let \(u_2 \in C^1(\mathbb{R}^n \setminus \Omega) \) be harmonic outside \(\Omega \). Prove that the function \(u(x), \ x \in \mathbb{R}^n \) defined by
\[
 u(x) = \begin{cases}
 u_1(x), & x \in \Omega, \\
 u_2(x), & x \in \mathbb{R} \setminus \Omega
 \end{cases}
\]
is harmonic in \(\mathbb{R}^n \) if and only if
\[
 u_1|_{\partial \Omega} = u_2|_{\partial \Omega} \quad \text{and} \quad \partial_{\nu} u_1|_{\partial \Omega} = \partial_{\nu} u_2|_{\partial \Omega}.
\]

As usual, \(\nu \) denotes the exterior normal to \(\partial \Omega \), that is also the interior normal to \(\mathbb{R}^n \setminus \Omega \).

Hint: Prove first that \(u \) is a weak solution to \(\Delta u = 0 \) using Green’s formula.
6. Use Hadamard’s method of descent to derive the formula for the solution of initial value problem for the 1D wave equation on the whole line

\[u_{tt} = u_{xx}, \quad u|_{t=0} = f(x), \quad u_t|_{t=0} = g(x) \]

from the known formula for the solution of the 2D wave equation in the whole plane

\[u_{tt} = u_{xx} + u_{yy}. \]

Assume that \(f \) and \(g \) are as smooth as needed.