1. Consider the following Cauchy problem:
\[xu_x - yu_y = u - 1, \]
\[u(x, x) = 1 + x^3. \]

 a) (8 pts.) At what values \(x_0 \) is there a unique \(C^1 \) solution in a neighborhood of \((x_0, x_0)\)? Cite a theorem to support your answer.

 b) (12 pts.) Find the solution near the points \((x_0, x_0)\) found in 1.a).

2.) (20 pts.) Let \(D \) be a bounded smooth domain in \(\mathbb{R}^n \). Assume that \(u \) is a given function in \(C^3(D) \cap C^2(\overline{D}) \), and \(\Delta u = 0 \) in \(D \). Can \((\partial u / \partial x_1)^2 \) have an interior maximum in \(D \)? Justify your answer.

3.a.) (10 pts) Let \(\Omega \) be a bounded \(C^2 \) domain in \(\mathbb{R}^n \). Assume:
\(u, u_t, u_{x_i}, u_{x_i x_j} \) are in \(C(\overline{\Omega} \times [0, \infty)) \) for all \(1 \leq i, j \leq n \),
\(u_t - \Delta u = 0 \) in \(\Omega \times [0, \infty) \),
and \(u = 0 \) in \(\partial \Omega \times [0, \infty) \).

Show that for each \(T > 0 \):
\[(*) \int_{\Omega} u^2(x, T) dx \leq \int_{\Omega} u^2(x, 0) dx. \]

Hint: \(0 = 2u(u_t - \Delta u) \) in \(\Omega \times (0, T) \). Integrate by parts.

3.b.) (10 pts.) By integrating by parts as in 3.a) on \(B_R(0) \times (0, T) \) and letting \(R \to \infty \), prove that if \(v \) is a continuous, bounded solution in \(\mathbb{R}^n \times [0, \infty) \) of:
\(v_t - \Delta v = 0 \) in \(\mathbb{R}^n \times [0, \infty) \),
\(v(x, 0) = f(x) \) for all \(x \) in \(\mathbb{R}^n \),
\(\int_{\mathbb{R}^n} |f(x)|^2 dx < \infty \),
where \(f \) is \(C^\infty \) with compact support in \(\mathbb{R}^n \),
and \(v_t, v_{x_i}, v_{x_i x_j} \) are in \(C(\mathbb{R}^n \times [0, \infty)) \) for all \(1 \leq i, j \leq n \),
then \(\int_{\mathbb{R}^n} |v(x, T)|^2 dx \leq \int_{\mathbb{R}^n} |v(x, 0)|^2 dx. \)
4.) Consider the solution of
\[u_{tt} - \Delta u = 0 \] in \(\mathbb{R}^3 \times (0, \infty) \),
\[u(x, 0) = 0 \text{ and } u_t(x, 0) = g(x) \] for all \(x \) in \(\mathbb{R}^3 \),

where \(u \) is in \(C^2(\mathbb{R}^3 \times [0, \infty)) \). Assume \(g \) is \(C^\infty \) with compact support in \(\mathbb{R}^3 \) and
\[g(x) > 0 \text{ when } |x| < 1, \ g(x) = 0 \text{ when } |x| \geq 1. \]

(a.) (10 pts.) What is the solution to the above problem?

(b.) (10 pts.) For each \(x_0 \) in \(\mathbb{R}^3 \), identify \(Z(x_0) \equiv \{ t > 0 : u(x_0, t) = 0 \} \). Justify your answer.

5. Let \(\Gamma = \{(x, y) \in \mathbb{R}^2 : y = x^2 \} \). Consider the Cauchy problem:
\[4yu_{yy} - 4xu_{xy} + 3xy^2u_{xx} = 0, \]
\[u(x, y) = x^3y^2 - 2y \] on \(\Gamma \),
\[u_y(x, y) = 3xy^2 \] on \(\Gamma \).

(a.) (10 pts.) At what points \((x_0, y_0) \) on \(\Gamma \) is there a real analytic solution of this problem in a neighborhood of \((x_0, y_0) \)? Cite a theorem to justify your answer.

(b.) (10 pts.) Compute the terms of order \(\leq 1 \) in the power series for the solution expanded about the point \((1,1) \).