MATH 530 Qualifying Exam
January 2017 (S. Bell)

Each problem is worth 20 points

1. Suppose that \(f(z) \) is analytic on the complex plane minus a single point \(z_0 \). Suppose further that \(f \) has a simple pole at \(z_0 \) and a removable singularity at infinity. Prove that
\[
f(z) = \frac{A}{z - z_0} + B,
\]
where \(A \) and \(B \) are complex constants.

2. Let
\[
f(z) = \frac{\log z}{(z^2 + 4)^2},
\]
where \(\log \) denotes a branch of the complex logarithm with branch cut along the negative imaginary axis that agrees with the real logarithm \(\ln \) on the positive real axis. For a radius \(r > 0 \), let \(C_r \) denote the half circle parametrized by \(z(t) = re^{it} \) for \(0 \leq t \leq \pi \), and for \(a < b \), let \(L[a,b] \) denote the line segment on the real line parametrized by \(z(t) = t \) for \(a \leq t \leq b \).

a) Assume that \(r > 0 \). Prove that \(\int_{C_r} f(z) \, dz \) goes to zero as \(r \) goes to infinity and as \(r \) goes to zero.

b) Assume that \(0 < \epsilon < R \). Note that \(\int_{L[\epsilon,R]} f(z) \, dz = \int_{\epsilon}^{R} \frac{\ln t}{(t^2 + 4)^2} \, dt \). Express \(\int_{L[-R,-\epsilon]} f(z) \, dz \) in terms of explicit real integrals.

c) Compute the residue of \(f(z) \) at \(2i \).

d) Finally, use the residue theorem, take limits, and take the real part to compute
\[
I = \int_{0}^{\infty} \frac{\ln t}{(t^2 + 4)^2} \, dt.
\]

3. Suppose that \(\{a_n\}_{n=1}^\infty \) is a sequence of distinct points in the unit disc with no limit points in the disc. Prove that the radius of convergence of the power series \(\sum_{n=1}^{\infty} a_n z^n \) is equal to one.

4. Prove that the series \(\sum_{n=1}^{\infty} \frac{1}{(z-n)^2} \) converges on the complex plane minus the positive integers to an analytic function with a double pole at each positive integer.

5. Suppose that \(f(z) \) is a continuous complex valued function on a disc such that the integral \(\int_{\gamma} f(z) \, dz \) is equal to zero for every contour \(\gamma \) that is the boundary of a square in the disc. Prove that \(f \) must be analytic.