1. Classify the singularities at 0:

 \(a) \exp\left(\frac{\sin z}{z}\right), \quad b) \sum_{n=0}^{\infty} n(z - 1)^n, \quad \cos\left(\frac{1}{e^{z} - 1}\right). \)

2. Evaluate the integrals

 \(a) \int_C \sin\frac{1}{z}dz, \quad b) \int_C \sin^2\frac{1}{z}dz, \)

 where \(C \) is the circle \(|z| = 2. \)

3. Describe the full preimage of the segment \([-2, 2]\) under \(\cos z \). Make a picture.

4. Find a conformal map of the upper half-plane, from which the vertical ray \([i, \infty)\) is removed, onto the upper half-plane.

5. Let \(f \) be a meromorphic function in the unit disc \(D \) having only one simple pole at \(z_0 \in D, \quad z_0 \neq 0. \) Let \(f(z) = a_0 + a_1z + a_2z^2 + \ldots \) in a neighborhood of 0. Prove the equality

 \(z_0 = \lim_{n \to \infty} \frac{a_n}{a_{n+1}}. \)

6. Let \(f \) be a holomorphic function in the unit disc \(D. \)

 a) Prove that if \(f \) is injective in \(D \) then \(f'(z) \neq 0 \) for all \(z \in D. \)

 b) Show that the converse is not true: there is a holomorphic function \(f \) in \(D \) whose derivative has no zeros in \(D \) but \(f \) is not injective in \(D. \)