QUALIFYING EXAMINATION JANUARY 2000 MATH 530 - Prof. Bell

- 1. (20 pts) Prove that $\ln |z|$ cannot have a harmonic conjugate on the domain $\{z : 1 < |z| < 2\}.$
- 2. (20 pts) Suppose that $\{a_n\}_{n=1}^{\infty}$ is a sequence of complex numbers in the unit disk. What can you say about the radius of convergence of the series $\sum_{n=1}^{\infty} a_n z^n$ if $|a_n| \to 1$ as $n \to \infty$? What can you say about the radius of convergence if the set $\{a_n\}$ is dense in the unit disk?
- **3.** (20 pts) Suppose that γ_1 and γ_2 are two continuously differentiable curves that cross at a point z_0 in the complex plane and that their tangent vectors make an angle α at z_0 . If the two curves are contained in the zero set of a harmonic function that is not identically zero, what are the possible values of α ? If $\alpha = 0$, what can you say about the two curves near z_0 ?
- 4. (20 pts) Calculate

$$\int_0^\infty \frac{\ln x}{(x^3+1)} \, dx.$$

by integrating a meromorphic function around a contour γ described as follows. Let $\alpha = 2\pi/3$. The contour γ follows the real axis from the ϵ to R, then follows the circle Re^{it} from t = 0 to $t = \alpha$, and then follows a line back to $\epsilon e^{i\alpha}$, then follows the circle ϵe^{it} back to ϵ .

5. (20 pts) Let z_n be a sequence of distinct non-zero complex numbers such that $z_n \to \infty$ as $n \to \infty$, and let m_n be a sequence of positive integers. Let g be a meromorphic function on the plane having simple poles with residue m_n at z_n and having no other poles. If $z \neq z_n$ for all n, let γ_z be any path from 0 to z which avoids the set $\{z_n\}$. Define

$$f(z) = \exp\left(\int_{\gamma_z} g(\zeta) \, d\zeta\right).$$

Prove that f(z) is independent of the choice of γ_z (although the integral itself might not be). Prove that f is analytic on the complement of $\{z_n\}$, that f has removable singularities at each point z_n , and that the extension of f has a zero of order m_n at z_n .

You have shown that the Weierstraß Theorem follows from the Mittag-Leffler Theorem.