1. (20 pts) Suppose that \(f \) is a continuous complex valued function on the unit disc \(D_1(0) \) and that \(f \) is analytic on the upper half disc, \(\{ z : \text{Im} \ z > 0 \} \cap D_1(0) \), and analytic on the lower half disc, \(\{ z : \text{Im} \ z < 0 \} \cap D_1(0) \). Use only Morera’s Theorem to prove that \(f \) must actually be analytic on the whole disc.

2. (20 pts) Evaluate the integral \(\int_0^\infty \sin(x^2) \, dx \) by integrating \(e^{iz^2} \) around the contour that starts at the origin and follows the real line out to a point \(R > 0 \), then follows the circular arc \(Re^{it} \) from \(t = 0 \) to \(t = \pi/4 \), and returns to the origin along the line joining \(Re^{i\pi/4} \) to 0. Let \(R \to \infty \). You may use the fact that \(\int_0^\infty e^{-x^2} \, dx = \sqrt{\pi}/2 \) without proving it.

3. (20 pts) Prove that the integral
\[
\int_0^1 \frac{t^2}{t-z} \, dt
\]
defines an analytic function \(f(z) \) on \(\mathbb{C} - [0, 1] \). State Liouville’s Theorem and use it to prove that \(f \) cannot be extended to \([0, 1] \) in such a way to make \(f \) an entire function.

4. (20 pts)
 a) (5 pts) Give a careful statement of the Schwarz Lemma.
 b) (15 pts) Prove that any analytic function \(f \) that maps the unit disc into itself, but is not one-to-one, must satisfy \(|f'(0)| < 1 \). (Note, we do NOT assume that \(f(0) = 0 \) here.)

5. (20 pts) Suppose \(f \) is analytic on a neighborhood of the closed unit disc. If \(|f(z)| < 1 \) when \(|z| = 1 \), prove that there must exist at least one point \(z \) with \(|z| < 1 \) such that \(f(z) = z \).