1. Define \(f(z) = \int_0^1 \frac{dt}{1 + tz} \).

 (a) (10 points) Use Morera’s Theorem to show that \(f \) is analytic in \(\mathbb{D} \).

 (b) (10 points) Find a power series expansion for \(f(z) \) on \(\mathbb{D} \).

2. (20 points) Suppose \(f \) is entire and that there is some \(K > 0 \) so that if \(|z| \geq K \), then

 \[|\text{Re} f(z)| \geq |\text{Im} f(z)|. \]

 Prove that \(f \) is constant.

3. (20 points) Suppose \(f \) is a holomorphic function (not necessarily bounded) on \(\mathbb{D} \) such that \(f(0) = 0 \). Prove that the infinite series \(\sum_{n=1}^{\infty} f(z^n) \) converges uniformly on compact subsets of \(\mathbb{D} \).

4. (20 points) Define a family \(\mathcal{F} \) of functions holomorphic in an open set \(\Omega \) to be a normal family if every sequence from \(\mathcal{F} \) contains either a subsequence that converges uniformly on every compact set \(K \subset \Omega \) or a subsequence that tends uniformly to \(\infty \) on every compact set.

 Let \(f \) be entire, and let \(\mathcal{F} \) be the family \(\{ f(kz) : k \in \mathbb{C} \} \). Also, let \(\Omega \) be the annulus \(1/2 < |z| < 2 \). Prove that \(\mathcal{F} \) is a normal family in \(\Omega \) if and only if \(f \) is a polynomial.

5. Let \(\Omega \) be a bounded, open, connected set, and suppose that \(f_1, f_2, \ldots, f_n \) are holomorphic in \(\Omega \) and continuous on the closure of \(\Omega \). Let \(g = |f_1| + |f_2| + \cdots + |f_n| \).

 (a) (10 points) Prove that the maximum of \(g \) is attained on the boundary of \(\Omega \).

 (b) (10 points) Prove that if \(g \) is constant, then each \(f_k \) is also constant.