1. Convert the integral
 \[\int_0^{2\pi} \frac{d\theta}{2 + \sin \theta} \]
 into a contour integral of the form \(\int_C f(z) \, dz \) where \(C \) is the unit circle and \(f \) is a rational function, and then use the Residue Theorem to compute the integral.

2. Find the radius of convergence about \(z = 0 \) of the power series
 \[\sum_{n=1}^{\infty} \frac{n^n}{n!} z^{2n}. \]

3. Find a one-to-one conformal map from the quarter disc
 \[\{ z = re^{i\theta} : 0 < r < 1, 0 < \theta < \pi/2 \} \]
 onto the unit disc. You may express your solution as a composition of simpler mappings.

4. Compute
 \[\int_0^\infty \frac{1}{x^3 + 1} \, dx \]
 by integrating \(f(z) = 1/(z^3 + 1) \) around the contour that follows the real line from zero to \(R \), then follows the circle \(Re^{it} \) from \(t = 0 \) to \(t = 2\pi/3 \), and then follows the line \(te^{i2\pi/3} \) from \(t = R \) back to \(t = 0 \). Use the Residue Theorem and let \(R \to \infty \).

5. Suppose that \(f(z) \) is an analytic function that maps the unit disc into itself with two distinct fixed points, i.e., with points \(z_1 \) and \(z_2 \) in the unit disc, \(z_1 \neq z_2 \), such that \(f(z_j) = z_j \) for \(j = 1, 2 \). Prove that \(f(z) = z \) for all \(z \).