MATH 530 Qualifying Exam

August 2014 (S. Bell)

Each problem is worth 20 points

- 1. State the Maximum Modulus Principle and Liouville's Theorem. Show that the Maximum Modulus Principle implies Liouville's Theorem.
- 2. Find a one-to-one conformal mapping from the unit disc minus the real interval [0, 1) onto the unit disc.
- **3.** a) Compute the residue at the origin of $\frac{e^z}{\sin^2 z}$. (Don't use a memorized formula. Compute it.)
 - b) Compute $\int_{\gamma} e^{1/z} dz$ where γ is a closed curve that avoids the origin, but can cross itself and wrap around the origin any number of times.
- 4. Suppose that f is a meromorphic function on a simply connected domain Ω . This means that there is a discrete set of points $\mathcal{A} \subset \Omega$ such that f is analytic on $\Omega \mathcal{A}$ and f has poles at the points in \mathcal{A} . Prove that the following three conditions are equivalent:
 - i) f = F' for a meromorphic function F on Ω ,
 - ii) $0 = \int_{\gamma} f \, dz$ for every closed curve γ in ΩA .
 - iii) The residue of f is zero at each point $a \in A$.
- 5. Let f be a fixed entire function, and let \mathcal{F} be the set of all functions of the form g(z) = f(kz), where k runs over all complex constants. A family of analytic functions on a domain is called *normal* if every sequence of functions in the family contains either a subsequence that converges uniformly on compact subsets, or a subsequence that tends uniformly to ∞ on compact subsets.

Prove that if \mathcal{F} is a normal family in the annulus r < |z| < R where 0 < r < R, then f must be a polynomial.