Each problem is worth 10 points.

1. Suppose that \(\{f_n\}_{n \geq 1} \) is pointwise bounded and equicontinuous on a compact set \(K \).
 (a) Show that \(\{f_n\}_{n \geq 1} \) is uniformly bounded on \(K \).
 (b) Show that \(f(x) = \inf \{f_n(x) : n \geq 1\} \) is uniformly continuous on \(K \).

2. Suppose that \(f \) is continuous on the interval \(0 < x \leq 1 \).
 (a) Show that there exists a sequence of polynomials that converges pointwise to \(f \) on \((0, 1] \).
 (b) State a necessary and sufficient condition on \(f(x) \) for \(x \in (0, 1] \) such that the convergence in (a) may be taken to be uniform on \((0, 1] \). Show that the condition is necessary and sufficient.

3. If \(f_n \) is measurable for each \(n \geq 1 \), show that \(\limsup_{n \to \infty} f_n \) is measurable.

4. (a) Show that \(0 \leq a \leq b \leq 2\pi \) implies \(\lim_{n \to \infty} \int_a^b \cos nt \, dt = 0 \).
 (b) Show that \(\lim_{n \to \infty} \int_0^{2\pi} f(t) \cos nt \, dt = 0 \) for every \(f \in L^1[0, 2\pi] \).

5. If \(f \in L^\infty[0, 1] \), show that \(\lim_{p \to \infty} \left(\int_0^1 |f|^p \, dx \right)^{1/p} = \|f\|_\infty \).

6. If \(f_n \to f \) a.e. on \([0, 1] \) and, given any \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that \(|E| < \delta \) implies \(\int_E |f_n| \, dx < \epsilon \), show that \(\lim_{n \to \infty} \int_0^1 |f - f_n| \, dx = 0 \).

7. (a) Let \(g_n(x) = \frac{e^{-x/n}}{n} \), \(x \geq 0 \), \(n \geq 1 \).
 (i) Show that \(g_n(x) \in L^1[0, \infty) \), \(n \geq 1 \).
 (ii) Show that the hypothesis of the Lebesgue Dominated Convergence Theorem is not satisfied for \(\{g_n\}_{n \geq 1} \).
 (b) Let \(h_n(x) = n \sin \left(\frac{x}{n} \right) \), \(0 \leq x \leq \pi \), \(n \geq 1 \). Show that the hypothesis of the Lebesgue Dominated Convergence Theorem is satisfied for \(\{h_n\}_{n \geq 1} \).

8. Use the Vitali Covering Lemma to show that, if \(f \) is finite-valued and increasing on \([0, 1] \), \(u > 0 \), \(\epsilon > 0 \), and \(m^* \) denotes Lebesgue outer measure, then

\[
m^* \left(\left\{ x \in [0, 1) : \limsup_{h \to 0^+} \frac{f(x + h) - f(x)}{h} > u \right\} \right) \leq \frac{f(1) - f(0)}{u} + \epsilon.
\]