QUALIFYING EXAMINATION
AUGUST 2003
MATH 544 - Prof. Davis

(15 pts) 1. Let \(f \) be an integer valued function on \(\mathbb{R} \). Show that \(\{ x : f \text{ is not continuous at } x \} \) is a Borel set.

(15 pts) 2. Let \(A \) and \(B \) be (not necessarily Lebesgue measurable) subsets of \(\mathbb{R} \) and let \(|e| \) stand for Lebesgue outer measure. Prove that if \(|A|_e = 1 \) and \(|B|_e = 1 \) and \(|A \cup B|_e = 2 \) then \(|A \cap B|_e = 0 \).

(15 pts) 3. Show, with proof, \(F'(1) < 0 \), where \(F(x) = \int_0^\infty \frac{e^{-xy}}{y^2 + 1} dy \).

(15 pts) 4. Prove that if \(f \) is a uniformly continuous function on \(\mathbb{R} \) and if \(h(x) = \int_{x-1}^{x+1} f(s) ds \) then \(h \) is uniformly continuous on \(\mathbb{R} \).

(20 pts) 5. Let \(g(x) \) be a continuous function on \([0, 1]\) satisfying \(g(0) = 0 \), \(g(1) \leq 1 \), and \(g(s) \leq g(t) \) if \(0 \leq s < t \leq 1 \). Put \(\phi_n(x) = g(x)^n \). Prove that if \(f \) is a continuous function on \([0, 1]\), \(\lim_{n \to \infty} \int_0^1 f(x) d\phi_n(x) \) exists.

(20 pts) 6. Let \(f \) be a bounded Lebesgue measurable function on \(\mathbb{R} \). Put \(g(x) = \sup\{ a \in \mathbb{R} : |\{ y : y \in (x, x + 1) \text{ and } f(y) > a \}| > 0 \} \), where \(|\cdot| \) is Lebesgue measure (i.e. \(g(x) \) equals the essential supremum of \(f \) over \((x, x + 1)\)). Prove \(\liminf_{x \to 0} g(x) \geq g(0) \).