Each problem is worth 5 points.

1. Let \(a < b \) be real numbers, \(g_i : \mathbb{R} \to [a, b] \) arbitrary functions, \(i \in \mathbb{N} \), and \(h : \mathbb{R} \to \mathbb{R} \) continuous. Supposing that the \(g_i \) converge uniformly, prove that \(h \circ g_i \) also converge uniformly.

Does the same hold if instead of \(g_i : \mathbb{R} \to [a, b] \) we require only \(g_i : \mathbb{R} \to \mathbb{R} \)?

2. Suppose \(f \in L^1(\Omega, \mathcal{A}, \mu) \) and \(f(x) \neq 0 \) for almost every \(x \in \Omega \). Prove that \(\mu \) is \(\sigma \)-finite.

3. Let \(f \) be an everywhere finite measurable function on a measure space \((\Omega, \mathcal{A}, \mu)\), such that for every continuous function \(\alpha : \mathbb{R} \to \mathbb{R} \) the composition \(\alpha \circ f \) is integrable. Prove that \(\operatorname{ess sup} |f| < \infty \).

4. Let \(a < b \) be real numbers and \(\phi_n : [a, b] \to \mathbb{R} \) a sequence of increasing, absolutely continuous functions. Show that if the series \(\sum_{n=1}^{\infty} \phi_n \) converges pointwise, then its sum is also absolutely continuous.

5. Fix \(p \in [1, \infty) \), and for \(j = 1, 2, \ldots \) define functions \(\omega_j : l^p \to \mathbb{R} \) by

\[
\omega_j(x_1, x_2, \ldots) = \sum_{i=j}^{\infty} |x_i|^p.
\]

Let \(C \subset l^p \) be a closed, bounded set, such that the functions \(\omega_j|C \) converge uniformly. Prove that any sequence in \(C \) contains a convergent subsequence.

6. Let \((\Omega, \mathcal{A}, \mu)\) be a finite measure space, \(p_0 \in [1, \infty) \), and \(\psi \in L^{p_0}(\Omega, \mathcal{A}, \mu) \). Prove that the function

\[
[1, p_0] \ni p \mapsto \|\psi\|_p
\]

is continuous.

7. Suppose \(X_1 \subset X_2 \subset \ldots \subset \mathbb{R} \) is an increasing sequence of subsets and \(X = \bigcup_{k=1}^{\infty} X_k \).

Denoting outer Lebesgue measure by \(m^* \), prove

\[
\lim_{k \to \infty} m^*(X_k) = m^*(X).
\]