1. Let \mathbb{F}_p denote the prime field with p elements.

(i) How many monic polynomials are there in $\mathbb{F}_p[x]$ of degree 2?

(ii) How many monic irreducible polynomials are there in $\mathbb{F}_p[x]$ of degree 2?

(iii) How many monic polynomials are there in $\mathbb{F}_p[x]$ of degree 3 that have a multiple root?

(iv) How many monic irreducible polynomials are there in $\mathbb{F}_p[x]$ of degree 3?
2. Let F be a field. Prove that in the polynomial ring $F[x]$ there are infinitely many irreducible polynomials.

3. Suppose α is a complex number that is algebraic over \mathbb{Q} and that $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ is odd. Prove that $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha^2)$.
4. For a prime number \(p \) and a nonzero \(a \in \mathbb{F}_p \), where \(\mathbb{F}_p \) is the field with \(p \) elements, prove that the polynomial \(x^p - x + a \) is irreducible and separable over \(\mathbb{F}_p \).

5. Let \(\omega \in \mathbb{C} \) be a primitive 10-th root of unity.
 (i) What is \([\mathbb{Q}(\omega) : \mathbb{Q}]\)?

 (ii) Diagram the lattice of subfields of \(\mathbb{Q}(\omega) \) giving generators for each.
6. Let G be a finite group and let p be a prime number dividing $|G|$. Let \mathcal{S} denote the set of p-tuples of elements of G the product of whose coordinates is 1: thus $\mathcal{S} = \{(x_1, x_2, \ldots, x_p) \mid x_i \in G \text{ and } x_1 x_2 \cdots x_p = 1\}$.

(i) What is the cardinality of \mathcal{S}?

(ii) For $\alpha, \beta \in \mathcal{S}$, define $\alpha \sim \beta$ if β is a cyclic permutation of α. What is needed for \sim to be an equivalence relation on \mathcal{S}?

(iii) Assuming \sim is an equivalence relation, which equivalence classes with respect to \sim contain exactly one element?

(iv) What integers are the order of an equivalence class with respect to \sim? Justify your answer.

(v) Prove that G has an element of order p.

7. Let F be an infinite field and let K/F be a finite algebraic field extension.

(i) If $K = F(\alpha)$ for some $\alpha \in K$, prove that there are only finitely many subfields of K that contain F.

(ii) If there are only finitely many subfields of K that contain F, prove that $K = F(\alpha)$ for some $\alpha \in K$.
8. Let \(\mathbb{Z} \) denote the ring of integers and let \(x \) be an indeterminate over \(\mathbb{Z} \).

(i) Is every ideal of \(\mathbb{Z}[x]/(x^2 - 1) \) principal? Justify your answer.

(ii) Is every ideal of \(\mathbb{Z}[x]/(x^2) \) principal? Justify your answer.

(iii) Is every ideal of \(\mathbb{Z}[x]/(15) \) principal? Justify your answer.
9. Let \mathbb{Z} denote the ring of integers and let x be an indeterminate over \mathbb{Z}. Diagram the lattice of ideals of the ring $\mathbb{Z}[x]/(6, x^3)$.

10. Suppose $f(x) \in \mathbb{Q}[x]$ is a monic polynomial of degree 5 that is reducible in $\mathbb{Q}[x]$ and let L/\mathbb{Q} be a splitting field of $f(x)$. List all positive integers n that are possibly equal to $[L : \mathbb{Q}]$.
Suppose L/K is a separable normal field extension with $[L : K] = 21$.

(i) What integers n are possibly equal to the degree of a monic irreducible polynomial $f(x) \in K[x]$ for which L/K is a splitting field of $f(x)$?

(ii) If the Galois group of L/K is known to be an abelian group, what integers n are possibly equal to the degree of a monic irreducible polynomial $f(x) \in K[x]$ for which L/K is a splitting field of $f(x)$? Justify your answer.
12. Let G be a finite group with $|G| = n$.

(i) Prove that G is isomorphic to a subgroup of the symmetric group S_n.

(ii) Is G isomorphic to a subgroup of the alternating group A_m for some positive integer m? Justify your answer.
13. Suppose G_i is a group and H_i is a normal subgroup of G_i, $i = 1, 2$. Let “\cong” denote “is group isomorphic to”.

(i) If $H_1 \cong H_2$ and $G/H_1 \cong G/H_2$, does it follow that $G_1 \cong G_2$? Justify your answer.

(ii) If $G_1 \cong G_2$ and $H_1 \cong H_2$, does it follow that $G_1/H_1 \cong G_2/H_2$? Justify your answer.

(iii) If $G_1 \cong G_2$ and $G_1/H_1 \cong G_2/H_2$, does it follow that $H_1 \cong H_2$? Justify your answer.
14. Let R be an integral domain and let $r \in R$ be a nonzero nonunit.

(i) What does it mean for r to be irreducible?

(ii) What does it mean for r to be prime?

(iii) Prove that if r is prime, then r is irreducible.

15. Suppose H is a subgroup of a group G such that $[G : H] = 6$. Prove there exists a normal subgroup N of G such that $N \subseteq H$ and $[G : N] \leq 6!$.