MATH 553 QUALIFYING EXAMINATION

January 2010

Please begin each question I–V on a new sheet.

In doing any part of a multipart problem, you may assume you’ve done the preceding parts, even if you haven’t.

I. 32 points Let p and q be (positive) integer primes such that p divides $q - 1$.

(a) Show that there exists a group G of order p^2q with generators x and y such that $x^{p^2} = 1$, $y^q = 1$, and $x^y = x^{a/q}$, with 1 the identity element and a some integer such that $a \not\equiv 1 \pmod{q}$ but $a^p \equiv 1 \pmod{q}$.

(b) Prove that the Sylow q-subgroup $S_q \subseteq G$ is normal.

(c) Prove that G/S_q is cyclic; and deduce that G has a unique subgroup H of order pq.

(d) Prove that H is cyclic.

(e) Prove that any order-p subgroup of G is contained in H, hence is generated by x^p and is contained in the center of G.

(f) Prove that the center of G is the unique order-p subgroup of G.

(g) Prove that every subgroup of G other than G itself is cyclic.

(h) For each divisor d of p^2q, say how many elements of order d there are in G.

II. 33 points

(a) Prove that the ring $R = \mathbb{Z}[\sqrt{-2}]$ is Euclidean.

(b) Show that $R/(3 + 2\sqrt{-2}) \cong \mathbb{F}_{17}$, the field with 17 elements.

(c) Show that the polynomial $X^4 + 3$ is irreducible over the field \mathbb{F}_{17}, and deduce that the polynomial $f(X) := X^4 - 170X^3 + 9 + 4\sqrt{-2} \in R[X]$ is irreducible.

(d) Is the polynomial $Y^4 - f(X) \in R[X,Y]$ irreducible? (Why?)

III. 8 points Prove or disprove: If $E \subseteq F \subseteq G$ are fields such that F is a finite Galois extension of E and G is a finite Galois extension of F, then G is a finite Galois extension of E.

IV. 12 points Let E be a field and let F be a finite Galois extension of E. Let $h(X)$ be an irreducible monic polynomial in $E[X]$, and let $h_1(X)$, $h_2(X)$ be two irreducible monic polynomials in $F[X]$ both of which divide $h(X)$. Then (prove): there exists an automorphism θ of $F[X]$ such that θ leaves all elements in $E[X]$ fixed and furthermore $\theta(h_1) = h_2$.

V. 15 points Let k be a commutative field, and let $k(X)$ be the field of fractions of the polynomial ring $k[X]$. Let f and g be the unique automorphisms of $k(X)$ fixing k and such that

$$f(X) = 1/X, \quad g(X) = 1 - X.$$

In the group of all automorphisms of $k(X)$, let G be the subgroup generated by f and g.

(a) Write down explicitly all the members of G. (f and g are already given above; specify the other members similarly.)

(b) Show that the fixed field of G is $k(Y)$, where

$$Y = (X^2 - X + 1)^3/X^2(X - 1)^2.$$

Hint. X is a root of the sixth-degree polynomial $(T^2 - T + 1)^3 - Y(T^2)(T - 1)^2 \in k(Y)[T]$.

(c) Show: If $k(Y) \not\subseteq L \not\subseteq k(X)$ with $L/k(Y)$ a normal field extension, then $L = k(Z)$ where

$$Z = X + (1 - 1/X) + \frac{1}{1 - X}.$$