FALL 2014

Qualifying Exam - MA 553

In answering any part of a question, you may assume the results in previous parts, even if you have not solved them. Be sure to provide all details of your work.

.....

 Show that P is solvable if Aut(P) is abelian. (10 points) Is converse true? (10 points) 2. Show that any group of order 405 is solvable. (20 points)

- 3. Let $\phi: G \to H$ be a epimomorphism of groups.
 - (a) Show that the image $\phi(P_G)$ of any Sylow *p*-subgroup P_G of *G* is a Sylow *p*-subgroup of *H*. (10 points)
 - (b) Show that any Sylow *p*-subgroup P_H of H is the image $\phi(P_G)$ of a certain Sylow *p*-subgroup P_G of G. (10 points)

4. Find all (up to isomorphism) abelian groups of order 500. (10 points) Find the number of elements of order 2 in each of them. (10 points)

5. Let R be an integral domain and F its field of fractions. Let P be a prime ideal in R and $R_P = \{\frac{a}{b} \mid a, b \in R, b \notin P\} \subset F$. Show that R_P has a unique maximal ideal. (20 points)

- 6. Let (R, +,) be a commutative ring with $1 \neq 0$. Show that the following conditions are equivalent:
 - (a) ${\cal R}$ has a unique maximal ideal ${\cal M}$
 - (b) The set of non-units in R is an ideal. (20 pts)

- 7. Find a simpler description for each of the following rings.

 - (a) (10 pts) $Q[x]/(x^3 + x)$. (b) (10 pts) $Z[x]/(x 2, x^2 + 1)$.

- 8. Consider the polynomial $f(x) = x^4 + 2x^2 + 4$ over Q.
 - (a) Express all roots in terms of radicals. (5 points)
 - (b) Determine the Galois group of the splitting field $L = Q_f$ over Q. (15 pts)

9. Let K be the splitting field of $(x^3 + x^2 + 1)(x^3 + x + 1)(x^2 + x + 1)$ over F_2 . Find the Galois group $Gal(K/F_2)$ and its generator(s).(15 points) Find all intermediate fields $F_2 \subseteq F \subseteq K$. (5 points)

10. Let n be a positive integer and d a positive integer that divides n. Suppose $a \in R$ is a root of the polynomial $x^n - 7 \in Q[x]$. Prove that there is precisely one subfield F of Q(a) with [F:Q] = d. (20 pts)