In answering any part of a question you may assume the preceding parts.

NOTATION: \(K \) is a field; \(M_n(K) \) is the set of \(n \times n \) matrices with elements from \(K \); \(V \) is an \(n \)-dimensional vector space over \(K \); \(\alpha \) is a linear operator on \(V \).

1. Prove that if \(A, B \in M_n(K) \) and one of \(A, B \) is invertible, then \(\det(aA + B) = 0 \) for at most \(n \) distinct values of \(a \in K \). [8 points]

2. Let \(A^T \) denote the transpose of \(A \in M_n(K) \). Prove that there exists an invertible \(P \in M_n(K) \), such that \(PAP^{-1} = A^T \). [8 points]

3. Let \(\pi_1 \) and \(\pi_2 \) be linear operators on a vector space \(V \), such that
\[
\pi_1 \pi_2 = \pi_2 \pi_1, \quad \pi_1^2 = \pi_1, \quad \pi_2^2 = \pi_2.
\]
Prove that \(V \) is the direct sum of the following four subspaces: [8 points]
\[
\text{Im } \pi_1 \cap \text{Im } \pi_2, \quad \text{Im } \pi_1 \cap \text{Ker } \pi_2, \quad \text{Ker } \pi_1 \cap \text{Im } \pi_2, \quad \text{Ker } \pi_1 \cap \text{Ker } \pi_2.
\]

4. Prove that if \(\alpha \) has the same matrix in all bases of \(V \), then there exists an \(a \in K \) such that \(\alpha = a \text{id}_V \). [8 points]

5. Prove that if \(\text{rank}(\alpha) = 1 \), then the minimal polynomial of \(\alpha \) has the form \(x(x - a) \) for some \(a \in K \). [8 points]

6. Let \(K = \mathbb{R} \) and let \(V \) be a space with inner product \((\cdot | \cdot) \). If \(\alpha \neq 0 \) and \((\alpha(v)|w) = -(v|\alpha(w)) \) for all \(v, w \in V \), then prove the following:
 (1) There exists an invariant subspace \(W \) of \(V \), with orthonormal basis \(e_1, e_2 \), such that \(\alpha(e_1) = -e_2 \) and \(\alpha(e_2) = e_1 \). [8 points]
 (2) The orthogonal complement \(W^\perp \) of \(W \) is \(\alpha \)-invariant. [6 points]
 (3) There exists an orthonormal basis of \(V \) in which the matrix of \(\alpha \) has the form
\[
\begin{bmatrix}
 A_1 & 0 & \cdots & 0 & 0 \\
 0 & A_2 & \cdots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & A_k & 0 \\
 0 & 0 & \cdots & 0 & O_{n-2k}
\end{bmatrix}
\]
where \(A_i = \begin{bmatrix} 0 & a_i \\ -a_i & 0 \end{bmatrix} \) with \(a_i \in K \) and \(O_{n-2k} \) is the zero matrix of order \(n - 2k \). [6 points]

7. Let \(\beta : \mathbb{Z}^3 \rightarrow \mathbb{Z}^3 \) be a homomorphism of abelian groups, given by left multiplication with the matrix
\[
\begin{bmatrix}
 -1 & 3 & 2 \\
 0 & 2 & 4 \\
 2 & -2 & 4
\end{bmatrix}.
\]
 (1) Explain why \(\text{Ker } \beta \) is a free abelian group, and find a basis. [8 points]
 (2) Decompose \(\mathbb{Z}^3 / \text{Im } \beta \) as a direct sum of cyclic groups. [8 points]

8. Let \(p \) be a prime number, and \(A = \mathbb{Z}/(p^2) \oplus \mathbb{Z}/(p^2) \oplus \mathbb{Z}/(p^3) \). Compute:
 (1) The number of elements of \(A \) of order \(p^2 \). [8 points]
 (2) The number of cyclic subgroups of \(A \) of order \(p^2 \). [8 points]
 (3) The number of non-cyclic subgroups of \(A \) of order \(p^2 \). [8 points]