In answering any part of a question you may assume the preceding parts.

Notation: \(V \) is a finite dimensional vector space over a field \(K \);
\(\alpha: V \to V \) is a linear operator.

1. In some basis of \(V \), \(\alpha \) is given by the matrix
\[
\begin{bmatrix}
1 & 1 & -2 & 0 \\
2 & 1 & 0 & 2 \\
1 & 0 & 1 & 1 \\
0 & -1 & 2 & 1
\end{bmatrix}
\]. Find:

(1) the rational normal form of \(\alpha \). [8]

(2) the Jordan normal form of \(\alpha \). [7]

2. Let \(P \) be the space of polynomials of degree \(< n \) over \(K \), and let \(\delta: P \to P \) be the operator, given by differentiation:
\[
\delta \left(\sum_{i=0}^{n-1} a_i x^i \right) = \sum_{i=1}^{n-1} i a_i x^{i-1}.
\]
Find the Jordan normal form of the \(\delta^2 \), when

(1) \(K \) is the field \(\mathbb{C} \) of complex numbers. [5]

(2) \(K \) is the field \(\mathbb{F}_3 \) with 3 elements. [5]

3. A \(\alpha \)-invariant subspace \(W \leq V \) is called irreducible, if the only proper \(\alpha \)-invariant subspaces of \(W \) are 0 and \(W \) itself.

(1) Prove that if the characteristic polynomial of \(\alpha \) has an irreducible factor of degree \(d \), then \(\alpha \) has an irreducible invariant subspace of dimension \(d \). [10]

(2) Prove the converse of (1). [10]

4. Let \(v_1, v_2 \) and \(w_1, w_2 \) be two pairs of vectors in a real inner product space \(V \).

(1) Prove that if \(\|v_1\| = \|w_1\|, \|v_2\| = \|w_2\|, \) and \(\langle v_1, v_2 \rangle = \langle w_1, w_2 \rangle \), then there is an orthogonal operator \(\alpha: V \to V \), such that \(\alpha(v_1) = w_1 \) and \(\alpha(v_2) = w_2 \). [10]

(2) Give necessary and sufficient conditions for \(\alpha \) in (1) to be unique. [5]

(3) Does the converse of (1) hold? [5]

5. Let \(B \) be the subgroup of \(\mathbb{Z}^3 \) generated by \((3, 6, 3), (-1, 4, 0), \) and \((5, 4, 6) \), and let \(A = \mathbb{Z}^3 / B \).

(1) Express \(A \) as a direct sum of cyclic groups. [8]

(2) How many distinct subgroups of order 6 does \(A \) contain? [7]

6. Let \(A \) be a finite abelian group, let \(n \) be an integer, and let \(\beta: A \to A \) be the map, defined by \(\beta(a) = na \) for each \(a \in A \).

(1) Prove that the abelian groups \(\text{Ker}(\beta) \) and \(A / \text{Im}(\beta) \) are isomorphic. [10]

(2) Prove that for each prime number \(p \), the number of subgroups of \(A \) of order \(p \) is equal to the number of subgroups of \(A \) of index \(p \). [Hint: Use the preceding problem with \(n = p \).] [10]