1. For the matrix
\[
A = \begin{pmatrix}
1 & 1 & 0 & 0 \\
-1 & -1 & 0 & 0 \\
-2 & -2 & 2 & 1 \\
1 & 1 & -1 & 0
\end{pmatrix} \in M_4(\mathbb{R})
\]
find:

a) The rational form \(R \) and Jordan canonical form \(J \). \[10\]
b) An invertible matrix \(S \in M_4(\mathbb{R}) \) such that \(S^{-1}AS = J \). \[5\]

2. For \(A = (a_{ij}) \in M_n(F) \) with \(n \geq 3 \), let \(A^\dagger = (a^\dagger_{ij}) \in M_n(F) \) be the matrix in which \(a^\dagger_{ij} \) is the cofactor \(A_{ij} \) of \(a_{ij} \). Prove that \(A^\dagger = \det(A)^{n-2}A \). \[10\]

3. For all \(A, B \in M_n(F) \), set \((A, B) = \text{tr}(AB) \).

1. Prove that \((\cdot, \cdot) \) is a non-degenerate symmetric bilinear form on \(M_n(F) \). \[5\]

Fix \(C \in M_n(F) \) and set \(S = \{ A \in M_n(F) : AC = CA \} \).

2. Show that \(S^\perp = \{ BC - CB : B \in M \} \). \[10\]

4. The matrix of \(T \) in some basis of \(V \) is equal to
\[
\begin{pmatrix}
\lambda & 0 & 0 & 0 \\
1 & \lambda & 0 & 0 \\
0 & 1 & \lambda & 0 \\
0 & 0 & 0 & \mu
\end{pmatrix}
\]

For each property below, determine those \(\lambda \) and \(\mu \) for which it holds:

1. The \(\mathbb{C}[x] \)-module associated with \(T \) is cyclic. \[3\]
2. There are only finitely many \(T \)-invariant subspaces. \[3\]
3. For every \(T \)-invariant subspace \(U \) of \(V \) there exists an \(T \)-invariant subspace \(U' \) of \(V \) such that \(V = U \oplus U' \). \[3\]

5. Assume that the minimal polynomial and the characteristic polynomial of \(T \) are equal. Show that a linear operator \(S : V \to V \) commutes with \(T \) if and only if \(S = p(T) \) for some polynomial \(p(x) \in \mathbb{F}[x] \). \[10\]

6. Assume that \(V \) has a positive-definite hermitian inner product over \(F = \mathbb{C} \). If \(T \) satisfies \(TT^* = T^*T \), prove that \(T^* = p(T) \) for some polynomial \(p(x) \in \mathbb{C}[x] \). \[10\]

7. Let \(V \) have a positive-definite inner product over \(F = \mathbb{R} \), and the operator \(T \) preserves orthogonality, that is, \(u \perp v \) implies that \(T(u) \perp T(v) \). Prove that \(T = \lambda S \) for some orthogonal operator \(S \) and some \(\lambda \in \mathbb{R} \). \[10\]

8. List (up to isomorphism) all \(G \) with \(|G| = 72 \) and explain why your list is complete. Determine those among them that contain the largest number of subgroups of order 6. \[11\]

9. Suppose \(G \) and \(H \) are abelian groups of finite order having the same number of elements of order \(n \) for every positive integer \(n \). Show that \(G \) and \(H \) are isomorphic. (Hint: Begin by considering elements of prime order.) \[10\]