1. Let F be a field, let n be a positive integer, and let $W = F^{n \times n}$ denote the vector space of $n \times n$ matrices with entries in F.

(i) Let W_0 denote the subspace of W spanned by the matrices C of the form $C = AB - BA$. What is $\dim W_0$?

(ii) For $A \in F^{n \times n}$, define the adjoint matrix $\text{adj} A \in F^{n \times n}$.

(iii) If $A \in \mathbb{R}^{3 \times 3}$ and $\det A = 2$, what is $\det \text{adj} A$?

2. Let $T : \mathbb{C}^5 \to \mathbb{C}^5$ be a linear operator and let $g(x)$ be a polynomial in $\mathbb{C}[x]$.

If c is a characteristic value for $g(T)$, must there exist a characteristic value a for T such that $g(a) = c$? Explain why or why not.
3. Let $A \in \mathbb{C}^{4 \times 4}$ be a diagonal matrix with main diagonal entries 1, 2, 3, 4. Define $T_A : \mathbb{C}^{4 \times 4} \to \mathbb{C}^{4 \times 4}$ by $T_A(B) = AB - BA$.

(i) What is the dimension of the null space of T_A?

(ii) What is the dimension of the range of T_A?

(iii) What are the characteristic values of T_A?

(iv) What is the minimal polynomial of T_A?

(v) Is T_A diagonalizable? Explain.
4. Let F be a field, let m and n be positive integers and let $A \in F^{m \times n}$ be an $m \times n$ matrix.

(i) Define “row space of A”.

(ii) Define “column space of A”.

(iii) Prove that the dimension of the row space of A is equal to the dimension of the column space of A.
5. Let D be a principal ideal domain and let V and W denote free D-modules of rank 4 and 5, respectively. Assume that $\phi : V \to W$ is a D-module homomorphism, and that $B = \{v_1, \ldots, v_4\}$ is an ordered basis of V and $B' = \{w_1, \ldots, w_5\}$ is an ordered basis of W.

(i) Define what is meant by the coordinate vector of $v \in V$ with respect to the basis B?

(ii) Describe how to obtain a matrix $A \in D^{5 \times 4}$ so that left multiplication by A on D^4 represents $\phi : V \to W$ with respect to B and B'.

(iii) How does the matrix A change if we change the basis B by replacing v_1 by $v_1 + av_2$ for some $a \in D$?

(iv) How does the matrix A change if we change the basis B' by replacing w_1 by $w_1 + aw_2$ for some $a \in D$?
(10) 6. Classify up to similarity all matrices $A \in \mathbb{C}^{3 \times 3}$ such that $A^3 = I$, where I is the identity matrix, i.e., write down all possibilities for the Jordan form of A.

(10) 7. List up to isomorphism all abelian groups of order 72.
8. Let V be a finite-dimensional vector space over the field F and let $T : V \to V$ be a linear operator. Give V the structure of a module over the polynomial ring $F[x]$ by defining $x\alpha = T(\alpha)$ for each $\alpha \in V$.

(i) If $\{v_1, \cdots, v_n\}$ are generators for V as an $F[x]$-module, what does it mean for $A \in F[x]^{m \times n}$ to be a relation matrix for V with respect to $\{v_1, \ldots, v_n\}$?

(ii) If $F = \mathbb{C}$ and $A = \begin{bmatrix}
 x^2(x - 1)^2 & 0 & 0 \\
 0 & x(x - 1)(x - 2)^2 & 0 \\
 0 & 0 & x(x - 2)^3
\end{bmatrix}$ is a relation matrix for V with respect to $\{v_1, v_2, v_3\}$, list the invariant factors of V.

(iii) With assumptions as in part (ii), list the elementary divisors of V and describe the direct sum decomposition of V given by the primary decomposition theorem.

(iv) With assumptions as in part (ii), write the Jordan form of the operator T.
9. Let V be a finite-dimensional vector space over the field F and let $T : V \to V$ be a linear operator such that $\text{rank } T = 1$. List all polynomials $p(x) \in F[x]$ that are possibly the minimal polynomial of T. Explain.

10. Let V be an abelian group with generators $\{v_1, v_2, v_3\}$ that has the matrix

\[
\begin{pmatrix}
2 & 0 & 6 \\
4 & 8 & 0
\end{pmatrix}
\]

as a relation matrix. Express V as a direct sum of cyclic groups.
11. Let V be an abelian group generated by elements a, b, c. Assume that $2a = 6b, 2b = 6c, 2c = 6a$, and that these three relations generate all the relations on a, b, c.

(i) Write down a relation matrix for V.

(ii) Find generators x, y, z for V such that $V = \langle x \rangle \oplus \langle y \rangle \oplus \langle z \rangle$ is the direct sum of cyclic subgroups generated by x, y, z. Express your generators x, y, z in terms of a, b, c. What is the order of V?
(8) 12. Let F be a field.

(i) What is the dimension of the vector space of all 3-linear functions $D : F^{3 \times 3} \to F$? Explain why.

(ii) What is the dimension of the vector space of all 3-linear alternating functions $D : F^{3 \times 3} \to F$? Explain why.

(10) 13. Prove or disprove: if $T : \mathbb{R}^5 \to \mathbb{R}^5$ is a linear operator that has a cyclic vector and $S : \mathbb{R}^5 \to \mathbb{R}^5$ is a linear operator that commutes with T, then S is a polynomial in T.
14. Assume that V is a finite-dimensional vector space over an infinite field F and $T : V \to V$ is a linear operator. Give to V the structure of a module over the polynomial ring $F[x]$ by defining $x\alpha = T(\alpha)$ for each $\alpha \in V$.

(i) Outline a proof that V is a direct sum of cyclic $F[x]$-modules.

(ii) In terms of the expression for V as a direct sum of cyclic $F[x]$-modules, what are necessary and sufficient conditions in order that V have only finitely many T-invariant submodules? Explain.
(14) 15. Assume that M is a module over an integral domain D. Recall that a submodule N of M is said to be pure in M if for any $y \in N$ and $a \in D$, if there exists $x \in M$ with $ax = y$, then there exists $z \in N$ with $az = y$.

(i) If N is a direct summand of M, prove that N is pure in M

(ii) For $x \in M$, let $x + N$ denote the coset representing the image of x in the quotient module M/N. If N is a pure submodule of M and $\text{ann}(x + N)$ is a principal ideal (d) of D, prove that there exists $x' \in M$ such that $x + N = x' + N$ and $\text{ann} x' = \{a \in D : ax' = 0\}$ is the principal ideal (d).
Assume that M is a finitely generated torsion module over the polynomial ring $F[x]$, where F is a field, and that N is a pure submodule of M. Prove that there exists a submodule L of M such that $N + L = M$ and $N \cap L = 0$.