Instructions: Give a complete solution to each question. For problems with multiple parts you may assume the result of the previous parts to solve the subsequent parts. Begin each problem on a new sheet of paper. Be sure your name is on every sheet of your solutions.

Notation: The following are standard for this examination. If \(R \) is a ring, \(M_n(R) \) is the collection of \(n \times n \) matrices with \(R \)-entries, and \(R[x] \) is the ring of polynomials with \(R \)-coefficients. The symbols \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \) denote the integers, the field of rational numbers, the field of real numbers, and the field of complex numbers, respectively. The symbol \(I_n \) denotes the \(n \times n \) identity matrix, and \(I_V \) is the identity transformation of a vector space \(V \).

1. (10 points) Let \(R \) be a principal ideal domain. A finitely generated \(R \)-module \(M \) is said to be \textbf{indecomposable} if no submodule of \(M \) is a direct summand of \(M \), i.e., it is impossible to find proper submodules \(M_1, M_2 \) of \(M \) so that \(M = M_1 \oplus M_2 \). Determine all indecomposable \(R \)-modules.

2. Let \(R \) be a commutative ring with identity \(1_R \).

 (a) (6 points) Suppose \(A \in M_n(R) \) and \(b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \) is a solution to \(Ax = 0 \).

 Show that, for each \(i \), \(b_i \det A = 0 \).

 (b) (3 points) Use (a) to show that if \(R \) is an integral domain and \(A \in M_n(R) \) is singular (i.e., the kernel of \(A \) is a non-zero submodule of \(R^n \)) then \(\det A = 0 \).

3. (10 points) Suppose \(A \in M_9(\mathbb{C}) \), and \(I = I_9 \) satisfy the following conditions:

 i) \(\text{rank}(A + 2I) = 8 \), and \(\text{rank}(A + 2I)^k = 7 \), for \(k \geq 2 \);

 ii) \(\text{rank}(A - (2i)I) = 7 \), and \(\text{rank}(A - (2i)I)^k = 6 \), for \(k \geq 2 \);

 iii) \(\text{rank}(A - 3I) = 8 \), \(\text{rank}(A - 3I)^2 = 7 \), \(\text{rank}(A - 3I)^3 = 6 \), and \(\text{rank}(A - 3I)^k = 5 \), for \(k \geq 4 \).

Find the Jordan Canonical form of \(A \).

4. Let \(V \) be a real or complex inner product space, with given inner product \((\cdot, \cdot) \).

 (a) (4 points) Prove that any collection of non-zero orthogonal vectors in \(V \) is linearly independent.

 (b) (5 points) Let \(\{v_1, v_2, \ldots, v_n\} \) be an orthogonal subset of \(V \). Prove that, for any \(w \in V \),

 \[
 ||w||^2 \geq \sum_{i=1}^{n} \frac{(w, v_i)^2}{||v_i||^2}.
 \]
5. (8 points) Let G be a group (not necessarily abelian). Suppose $\rho : G \to GL_n(\mathbb{C})$ is a homomorphism, i.e., $\rho(g_1)\rho(g_2) = \rho(g_1g_2)$ for all $g_1, g_2 \in G$. Finally, suppose the only G–invariant subspaces are $\{0\}$ and \mathbb{C}^n, i.e., if W is a subspace of \mathbb{C}^n and $\rho(g)W \subseteq W$ for all $g \in G$, then $W = \{0\}$ or \mathbb{C}^n. Show that if $A \in M_n(\mathbb{C})$ satisfies $A\rho(g) = \rho(g)A$ for all $g \in G$, then $A = cI_n$, for some $c \in \mathbb{C}$.

Hint: Find some G–invariant subspaces associated with A.

6. (12 points) Find the characteristic polynomial, minimal polynomial, and rational canonical form of the matrix

$$
\begin{pmatrix}
0 & 2 & 2 & 2 \\
2 & 0 & 2 & 2 \\
2 & 2 & 0 & 2 \\
2 & 2 & 2 & 0
\end{pmatrix}
\in M_4(\mathbb{Q}).
$$

7. (3 points) Suppose T is a linear operator on \mathbb{R}^n, $f \in \mathbb{R}[x]$ and α is a (real) eigenvalue of $f(T)$. Is there a (real) eigenvalue β of T so that $f(\beta) = \alpha$? Give a proof or counterexample.

8. (5 points each) Let F be a field with p elements.

(a) Determine the order of the group $GL_3(F)$ of 3×3 invertible matrices with entries in F.

(b) Determine the order of the group $SL_3(F)$, the elements of $GL_3(F)$ of determinant 1.

9. (4 points each) Let V be a finite dimensional complex inner product space, and suppose T is a normal operator on V.

(a) Prove T is self adjoint if and only if all eigenvalues of T are real.

(b) Prove T is unitary if and only if all eigenvalues of T have norm 1.

10. (5 points each) Let $S^1 = \{z \in \mathbb{C} | |z| = 1\}$. Note that S^1 is an abelian group with the operation of complex multiplication.

(a) Is S^1 finitely generated? Why or why not?

(b) Let $\chi : S^1 \to GL_1(\mathbb{C}) \simeq \mathbb{C} \setminus \{0\}$ be a \mathbb{Z}-linear map (i.e., a group homomorphism). Suppose z_1, z_2, \ldots, z_k are elements of S^1 of finite orders m_1, m_2, \ldots, m_k, and further suppose $\gcd(m_i, m_j) = 1$, for $i \neq j$. Show there is a positive integer n so that $\chi(z_i) = z_i^n$ for $i = 1, 2, \ldots, k$.

11. (5 points) Let F be a field and t_0, t_1, \ldots, t_n be distinct elements of F. Given elements $a_0, a_1, \ldots, a_n \in F$, show there is a polynomial $f \in F[x]$, with $\deg f \leq n$, so that $f(t_i) = a_i$, for $i = 0, 1, \ldots, n$.

12. (6 points) Let F be a field, $A \in M_n(F)$, and let $T_A : M_n(F) \to M_n(F)$ be given by $T_A(B) = AB$. Show the minimal polynomial of T_A is the minimal polynomial of A. Are the characteristic polynomials of A and T_A equal as well?