1. Let $A \in M_{n \times n}(K)$ (the vector space of $n \times n$ matrices over a field K). State and prove the Cayley-Hamilton Theorem for A. :
2. Let $S = R[x]^3/(f_1, f_2, f_3)$ be a module over $R[x]$ where $R[x]$ is the ring of real polynomials and $f_1 = (x, 1, 0)$, $f_2 = (1, x, 0)$, $f_3 = (0, 0, x - 1)$ be three elements in $R[x]^3$. Express $R[x]^3/(f_1, f_2, f_3)$ as direct sum of modules $\bigoplus_{i=1}^{m} R[x]/(c_i)$ such that $m \leq 3$ and $c_i | c_{i+1}$. (The fundamental theorem of finitely generated modules over P.I.D.)
3. Show that the \mathbb{Z}-module $\mathbb{Z}/n\mathbb{Z}$ is not projective for integer $n \geq 2$.
4. Show that $\text{Ext}^1_Z(Z/mZ, Z) \approx Z/mZ$ for $m \geq 2$.
5. Find the best straight line fit (least square approximation) to the measurement $b = 1$ at $t = 0$, $b = 3$ at $t = 1$, $b = 3$ at $t = 2$.
6. Find an orthonormal basis for P_3, the vector space of all polynomials of degree ≤ 3 under the inner product defined as

$$< f | g > = \int_0^1 f g \, dx$$
7. Let R be the field of real numbers. Let W be the subspace of R^4 generated by $(1, 1, 0, 0)^T$, $(0, 0, 1, 1)^T$. Given $x = (1, 2, 3, 4)^T$. Find $y, z \in R^4$ such that $x = y + z$ and $y \in W, z \in W^\perp$.
8. Find an 2×2 matrix A which has all the principal minors positive and which is not a positive matrix.
9. Let A be the matrix over complex numbers as follows,

$$A = \begin{pmatrix}
1 & 1 & 0 \\
1 & 1 & 2 \\
2 & 2 & 2
\end{pmatrix}.$$

Find the Jordan canonical form of A.
10. Decide if the following function has a local minima at the origin;

\[f(x, y, z) = 3x^2 + 6xy + 2xz + 4y^2 + 3yz + 2z^2 \]