1. Let \(S^2 = \{(x, y, z); x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3 \) be the unit sphere. Denote the north pole by \(N = (0, 0, 1) \) and the south pole by \(S = (0, 0, -1) \). Denote \(U_1 = S^2 \setminus \{N\} \) and \(U_2 = S^2 \setminus \{S\} \). For any \(p \in S^2 \setminus \{N\} \), denote by \(p\overrightarrow{N} \) the line in \(\mathbb{R}^3 \) passing through \(p \) and \(N \). Use similar notation for \(p\overrightarrow{S} \).

The stereographic projection \(\Phi_1 : U_1 = S^2 \setminus \{N\} \to \mathbb{R}^2 = \{(x, y, 0); (x, y) \in \mathbb{R}^2\} \) is defined as:

\[
\Phi_1(p) = \overrightarrow{pN} \cap \{z = 0\}, \quad \text{for any} \ p \in U_1.
\]

Similarly \(\Phi_2 : U_2 := S^2 \setminus \{S\} \to \mathbb{R}^2 \) is defined as

\[
\Phi_2(p) = \overrightarrow{pS} \cap \{z = 0\}, \quad \text{for any} \ p \in U_2.
\]

Prove that \((U_1 = S^2 \setminus \{N\}, \Phi_1), (U_2 = S^2 \setminus \{S\}, \Phi_2) \) define a differentiable structure on \(S^2 \). What is the transition function between these two coordinate charts?

2. Is there a smooth vector field on the 2-dimensional torus \(S^1 \times S^1 \) with a single zero point? What is the index of that zero point if such a vector field exists?

3. Denote by \(M = \text{Mat}_{3 \times 2}(\mathbb{R}) \cong \mathbb{R}^6 \) the set of \(3 \times 2 \) real matrices. \(A^T \) denotes the transpose of \(A \). Prove that the set \(N = \{A \in \text{Mat}_{3 \times 2}(\mathbb{R}); A^TA = I_2\} \) is a smooth manifold. What is its dimension?

4. Prove the following result:

Let \(M \) be a smooth manifold. A smooth 1-form \(\omega \) on \(M \) is an exact form if and only if, for any closed piece-wisely smooth curve \(C \) on \(M \), \(\int_C \omega = 0 \).

5. Let \(i : M \to N \) be an immersed submanifold and \(X \) be a smooth vector field on \(M \).

(a) If \(M \) is a smooth embedded submanifold, prove that there exists a smooth vector field \(X \) on \(N \) such that \(X_p = i_*(X_p) \) for any \(p \in M \).

(b) Is the above statement true if \(i \) is only an injective immersion but not an embedding?

6. Consider the distribution \(\Delta \) on \(\mathbb{R}^3 \) defined as the kernel of \(\alpha \) where:

\[
\alpha = ydx - xdy + dz.
\]

In other words, \(\Delta_p = \text{Ker}(\alpha_p) \) for any \(p \in \mathbb{R}^3 \). Is the distribution \(\Delta \) integrable?