1. Let \(C \) be the unit circle in \(\mathbb{R}^2 \) and \(S \) the boundary of the unit square centered at the origin. Show that there is no diffeomorphism \(F: \mathbb{R}^2 \to \mathbb{R}^2 \) with \(F(C) = S \).

2. Suppose that \(V \) is a 3-dimensional vector space with basis \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \). Show that \(V \) may be given the structure of a Lie algebra so that \([\vec{v}_1, \vec{v}_2] = \vec{v}_3, [\vec{v}_1, \vec{v}_3] = [\vec{v}_2, \vec{v}_3] = 0 \). Prove that every two dimensional subalgebra contains \(\vec{v}_3 \).

3. Does there exist a \(C^\infty \) vector field on \(S^n \) which vanishes at a) exactly two points, b) exactly one point?

4. Let \(N \) be a submanifold contained in a manifold \(M \). Suppose \(\gamma: (a, b) \to M \) is a \(C^\infty \) curve such that \(\gamma(a, b) \subset N \). Show by example that it is not necessarily true that \(\dot{\gamma}(t) \in T_{\gamma(t)}N \), for each \(t \in (a, b) \).

5. Define \(\omega = (x + y)dz - (y + z)dx + (x + z)dy \) and suppose \(S \) denotes the set where \(x^2 + y^2 + z^2 = 1 \) and \(z \geq 0 \). Evaluate \(\int_{\partial S} \omega \) both directly and by Stokes’ theorem.

6. Suppose that \(S^* = S^3 - (0,0,0,1) \), where \(S^3 \) denotes the three sphere \(x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1 \). Define vector fields \(V \) and \(W \) by \(V = (1 - x_4 - x_1^2, -x_1x_2, -x_1x_3, x_1(1 - x_4)) \) and \(W = (-x_1x_2, 1 - x_4 - x_2^2, -x_2x_3, x_2(1 - x_4)) \). Show that \(V \) and \(W \) are tangent to \(S^* \) and linearly independent.

7. If \(k \) is a real number, show that a nonempty subset \(T^k \) of \(S^* \), defined by \(x_3 + kx_4 = k \), \(kx_3 - x_4 \neq 0 \), is a two dimensional submanifold. Here one uses the notation of Problem 6. Is the inequality \(kx_3 - x_4 \neq 0 \) a consequence of the other hypotheses?

8. Show that each \(T^k \) is an integral manifold of the distribution spanned by \(V \) and \(W \). Is this an involutive distribution on all of \(S^* \)?

9. If two maps \(f \) and \(g \) from \(X \) to \(S^p \) satisfy \(||f(x) - g(x)|| < 2 \), for all \(x \), prove that \(f \) is homotopic to \(g \), the homotopy being smooth if \(f \) and \(g \) are smooth.

10. Suppose that \(p \) denotes the distance from the center of the ellipsoid \(\Sigma, \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \), to the tangent plane at the point \(P(x, y, z) \). Compute \(\iint_{\Sigma} pdS \) and \(\iint_{\Sigma} \frac{1}{p} dS \), where \(dS \) is the area element.