QUALIFYING EXAMINATION MATH 571 AUGUST 1994

- 1. a) Define metric.
 - b) Consider the set of all continuous real valued functions on [0,1]. Show $d(f,g) := \int_0^1 |f(x) g(x)| dx$ defines a metric on X.
- 2. Consider the topology on the real line generated by half open intervals [x, y) and (x, y]. Show that this is the discrete topology.
- 3. Show the unit interval [0, 1] is connected.
- 4. Let X be a compact Hausdorff space, let $\{C_{\alpha}\}$ be a family of closed subsets so that each $C_{\alpha} \cap C_{\beta}$ is in the family. Let $C = \cap C_{\alpha}$ and suppose that $C \subset U$ where U is an open set. Show $C_{\alpha} \subset U$ for some α .
- 5. Give an example in the plane \mathbb{R}^2 of a compact connected space which is not path connected and not locally connected.
- 6. Let X be a Hausdorff space. Let the cone of X, denoted CX, be the quotient of $X \times [0,1]$ where (x,1) is identified to a point. Show CX is locally compact only if X is compact.
- 7. Let Y^X denote the space of continuous maps from X to Y given the compact-open topology. Suppose X and Y are locally compact Hausdorff. Show that f and g in Y^X are in the same path component if and only if they are homotopic (Hint: Use the Exponential Law).
- 8. Suppose X is a path connected and locally path connected Hausdorff space so that its universal covering space \tilde{X} exists. Assume X is compact. Show \tilde{X} is compact only if $\pi_1(X)$ is a finite group.
- 9. Give an example of two compact connected metric spaces which are homotopy equivalent but are not homeomorphic.
- 10. Give an example of a connected finite simplicial complex K so that X(K) = -1. Recall that the Euler characteristic

$$X(K) := \#(0 - \text{Simplexes}) - \#(1 - \text{Simplices}) + \#(2 - \text{Simplicies}) \dots$$