Each problem is worth 12 points. There are 96 points altogether.

1. Let X be a metric space with metric d. Prove that d is continuous as a function from $X \times X$ to \mathbb{R}, where $X \times X$ has the “product metric” d' defined by

$$d'((x, y), (x_1, y_1)) = \max(d(x, x_1), d(y, y_1))$$

(you may assume d' is indeed a metric, you do not have to prove it).

2. Let X be an ordered set with the order topology. If X is connected, prove that X has the least upper bound property.

3. Let X be the closed unit disk in \mathbb{R}^2, and define an equivalence relation on X by: $a \sim b$ if either $a = b$ or a and b are both on the unit circle. Let X^* be the partition of X into the equivalence classes of \sim. Show that X^*, with its quotient topology, is homeomorphic to the one-point compactification of the open unit disk.

4. Show that every locally compact Hausdorff space is regular.

5. A manifold is a Hausdorff space with the property that every point has a neighborhood homeomorphic to \mathbb{R}^n. Prove that every manifold is regular.

6. Prove that every compact Hausdorff space is a Baire space.

7. Let $p : E \to B$ be a covering map with B connected. Suppose that $p^{-1}(b_0)$ is finite for some $b_0 \in B$. Prove that, for every $b \in B$, $p^{-1}(b)$ has the same number of elements as $p^{-1}(b_0)$.

8. Let X be a topological space and $f : [0, 1] \to X$ any continuous function. Define \tilde{f} by $\tilde{f}(t) = f(1 - t)$. Prove that $f \ast \tilde{f}$ is path-homotopic to the constant path at $f(0)$.