1. An embedding is an injective continuous map which is a homeomorphism onto its image.
 a) Let \(f : X \to Y \) be a one to one continuous map, and let \(X \) be compact. Show that \(f \) is an embedding.
 b) Give an example of a map \(f : \mathbb{R}^1 \to \mathbb{R}^2 \) which is one to one but is not an embedding.

2. Let \(Y = \prod_{\alpha \in A} X_\alpha \) be the product of a family of spaces \(\{X_\alpha | \alpha \in A\} \) with the product topology. Show that \(Y \) is connected if and only if \(X_\alpha \) is connected for all \(\alpha \).
 a) When \(A \) is finite
 b) When \(A \) is arbitrary

3. Let \(X \) be a locally compact space.
 a) Show \(X \) is completely regular.
 b) Let \(A \) be a subspace homeomorphic to the unit interval \(I \). Show there exists a retraction \(r : X \to A \).

4. The Hahn-Mazurkiewicz theorem [Hocking and Young p.129]. Let \(X \) be a Hausdorff space. We say \(X \) is a Peano space if there exists a surjective map \(f : I \to X \). Then \(X \) is Peano space if and only if \(X \) is compact, connected, locally connected, and metrizable.
 a) Describe a map \(I \to I \times I \) which is onto.
 b) Show the product of arbitrarily many unit intervals may not be metrizable.
 c) Give an example of a closed, connected bounded set in \(\mathbb{R}^2 \) which is not the image of some \(f : I \to \mathbb{R}^2 \).
 d) Suppose that \(p : \tilde{X} \to X \) is the simply connecting covering space over a Peano space \(X \). Show that \(\tilde{X} \) is a Peano space if and only if \(\pi_1(X) \) is finite.
5. Let $f : X \to Y$ be a closed map onto a compact space Y such that every fiber $f^{-1}(y)$ is compact. Show that X is compact.