I. a) Give the definition of a normal topology.
b) Let M be a metric space. Show that the metric topology on M is normal.

II. Let X be a topological space and let A be a subspace of X. Answer true or false for each of the following and give a counterexample for those assertions that are false. (You need not prove those assertions that are true.)
a) If X is connected then A is connected.
b) If X is compact then A is compact.
c) If X is Hausdorff then A is Hausdorff.
d) If X is compact and A is a closed subset of X then A is compact.
e) If X is metrizable then A is metrizable.

III. Let X be a Hausdorff topological space that is the image of a continuous function $f : [0, 1] \to X$. Show that
a) X is connected,
b) X is compact,
c) X is normal,
d) X has a countable dense subset.

IV. Let R^n denote n-dimensional space, so that R is the real line and R^2 is the plane.
a) Show that R is not homeomorphic to R^2.
b) Show that R^2 is not homeomorphic to R^3.

V. Let $p : E \to B$ be a covering map. If B is compact and $p^{-1}(b)$ is finite for each $b \in B$, then E is compact.