1. Let X be a topological space and suppose that there is a countable collection of open sets
\[\mathcal{B} = \{U_1, U_2, \ldots\} \]
which is a basis for the topology of X. Let $A \subset X$ and let $x \in \overline{A}$. \textbf{Prove} that there is a sequence in A which converges to x.

2. Let X be a topological space and let A be a set with the property that each point of A has a neighborhood U with $A \cap U$ closed as a subspace of U. \textbf{Prove} that there is an open V with $A = \overline{A} \cap V$.

3. \textbf{Prove} that there is an equivalence relation \sim on the interval $[0, 1]$ such that $[0, 1]/\sim$ is homeomorphic to $[0, 1] \times [0, 1]$. As part of your proof explain how you are using one or more properties of the quotient topology.

4. Let X be a Hausdorff space. Let x be a point of X and let C be a compact set with $x \notin C$. \textbf{Prove} that there are disjoint open sets U and V with $x \in U$ and $C \subset V$.

5. (For this problem, you may use the fact stated in Problem 4, even if you didn’t do that problem). Let Y be a locally compact Hausdorff space, let y be a point of Y, and let W be a neighborhood of y. \textbf{Prove} that there is a neighborhood O of y such that \overline{O} is compact and $\overline{O} \subset W$.

6. Let X be the quotient space obtained from an octagon P by pasting its edges together according to the labelling scheme $abab^{-1}cdcd^{-1}$ (read the formula carefully!).
 i) Calculate $H_1(X)$. (You may use anything proved in Munkres, but be sure to be clear about what you’re using.)
 ii) Assuming X is homeomorphic to one of the standard surfaces in the classification theorem, which surface is it?

7. Let $p : E \to B$ be a covering map. Let A be a connected space and let $a \in A$. \textbf{Prove} that if two continuous functions $\alpha, \beta : A \to E$ have the property that $\alpha(a) = \beta(a)$ and $p \circ \alpha = p \circ \beta$ then $\alpha = \beta$.

\textbf{For partial credit} you may assume that p is the standard covering map from \mathbb{R} to S^1.