1. Let X be a topological space. Recall that a subset of X is dense if its closure is X. **Prove** that the intersection of two dense open sets is dense.

2. Let X be a set with two elements $\{a, b\}$. Give X the indiscrete topology. Give $X \times \mathbb{R}$ the product topology. Let $A \subset X \times \mathbb{R}$ be $(\{a\} \times [0, 1]) \cup (\{b\} \times (0, 1))$. **Prove** that A is compact.
 You may use that fact that a set is compact if every covering by basic open sets has a finite subcovering.

3. Let B^2 be the disk $\{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\}$. Let S^1 be the circle $\{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$. **Prove** that there is an equivalence relation \sim such that B^2 is homeomorphic to $(S^1 \times [0, 1]) / \sim$. As part of your proof **explain** how you are using one or more properties of the quotient topology.

4. Let X be a set with 2 elements $\{a, b\}$. Give X the discrete topology. Let Y be any topological space. Recall that $\mathcal{C}(X, Y)$ denotes the set of continuous functions from X to Y, with the compact-open topology. **Prove** that $\mathcal{C}(X, Y)$ is homeomorphic to $Y \times Y$ (with the product topology).

5. Let X and Y be homotopy-equivalent topological spaces. Suppose that X is path-connected. **Prove** that Y is path-connected.

6. Suppose that X is a wedge of two circles: that is, X a Hausdorff space which is a union of two subspaces A_1, A_2 such that A_1 and A_2 are each homeomorphic to S^1 and $A_1 \cap A_2$ is a single point p.
 Use the Seifert-van Kampen theorem to **calculate** $\pi_1(X, p)$. You should state what deformation retractions you are using, but you don’t have to give formulas for them.

7. Let $p : E \to B$ be a covering map. Let A be a connected space and let $a \in A$. **Prove** that if two continuous functions $\alpha, \beta : A \to E$ have the property that $\alpha(a) = \beta(a)$ and $p \circ \alpha = p \circ \beta$ then $\alpha = \beta$.
 For partial credit you may assume that p is the standard covering map from \mathbb{R} to S^1.