MA 571 Qualifying Exam. August 2013 Professor R. Kaufmann

INSTRUCTIONS
There are 7 problems, two of them are on the back. Each problem is worth 10 points.
Unless otherwise stated, you may use anything in Munkres’s book—but be care-ful to make it clear what fact you are using.
When you use a set theoretic fact that isn’t obvious, be careful to give a clear explanation. To disprove a statement, give a counterexample and prove that it has the necessary properties.

PROBLEMS

1. (a) Give the definition of a sequence of points x_n converging to a point x in a topological space X.
 (b) Prove or disprove! A function $f : X \rightarrow Y$ is continuous if and only if for all sequences x_n converging to a point x in X the points $f(x_n)$ converge to $f(x)$.

2. For an uncountable product \mathbb{R}^J in the product topology let A be the subspace consisting of all points (x_α), for which $x_\alpha = 1$ for all but finitely many $\alpha \in J$. Show that there is a point in the closure of A which is not the limit of a sequence in A. Conclude using the Sequence Lemma that an uncountable product \mathbb{R}^J in the product topology is not metrizable.

3. If f and g are continuous functions on a topological space X with values in a Hausdorff space Y and f and g agree on a dense subset of X, then $f = g$.

4. Let X be a locally compact Hausdorff space, let Y be any space, and let the function space $\mathcal{C}(X,Y)$ have the compact-open topology. Prove that the map

 $e : X \times \mathcal{C}(X,Y) \rightarrow Y$

 defined by the equation

 $e(x, f) = f(x)$

 is continuous.

5. Let X be the subspace $\{(x, y) \in \mathbb{R}^2 : xy = 0\}$, and let $f : X \rightarrow \mathbb{R}$ be the function defined by $f(x, y) = x$. Prove or disprove!
 (a) f is a continuous map.
 (b) f is an open map.
 (c) f is a closed map.
 (d) f is a quotient map.
6. Let X be the space obtained by attaching two discs to S^1, where the first disc D_1 is attached via the map $\partial D_1 = S^1 \to S^1, z \to z^3$ and the second disc is attached by $g : \partial D_2 = S^1 \to S^1 : z \to z^5$. Compute $\pi_1(X)$ and $H_1(X)$. (Hint use the special case of Seifert–van Kampen for adjoining 2–cells).

7. The Klein bottle K is the space obtained from a square by the labelling scheme $aba^{-1}b$.

 (a) Give a presentation of the fundamental group of $S = K \# K$, that is the connected sum of two copies of K.

 (b) Give the standard surface in the classification of surfaces that S is homeomorphic to and prove your answer.