Department of Mathematics

Patricia E Bauman

Selected Publications

[1] Patricia Bauman and Phillips Daniel. Stability of B7 fiberts. Molecular Crystals and Liquid Crystals Journal., 510:1135-1145, 2009.
[2] Patricia Bauman and Phillips Daniel. A free boundary problem for bent-core liquid crystal fibers. Proceedings of the Ryukoku Workshop, eds. Y. Morita and H. Ninomiya : 11-23, 2009.
[3] Patricia Bauman and Yangsuk Ko. Analysis of solutions to the Lawrence-Doniach system for layered superconductors. SIAM J. Math. Anal., 37(3):914-940 (electronic), 2005.
[4] Patricia Bauman, Hala Jadallah, and Daniel Phillips. Classical solutions to the time-dependent Ginzburg-Landau equations for a bounded superconducting body in a vacuum. J. Math. Phys., 46(9):095104, 25, 2005.
[5] Nelly Andre, Patricia Bauman, and Dan Phillips. Vortex pinning with bounded fields for the Ginzburg-Landau equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(4):705-729, 2003.
[6] P. Bauman, D. Phillips, and Q. Shen. Singular limits in polymer-stabilized liquid crystals. Proc. Roy. Soc. Edinburgh Sect. A, 133(1):11-34, 2003.
[7] Patricia Bauman, M. Carme Calderer, Chun Liu, and Daniel Phillips. The phase transition between chiral nematic and smectic A * liquid crystals. Arch. Ration. Mech. Anal., 165(2):161-186, 2002.
[8] Patricia Bauman, Antonella Marini, and Vincenzo Nesi. Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J., 50(2):747-757, 2001.
[9] P. Bauman, M. Friesen, and D. Phillips. On the periodic behavior of solutions to a diffusion problem describing currents in a high-temperature superconductor. Phys. D, 137(1-2):172-191, 2000.
[10] P. Bauman, D. Phillips, and Q. Tang. Stable nucleation for the Ginzburg-Landau system with an applied magnetic field. Arch. Rational Mech. Anal., 142(1):1-43, 1998.
[11] Patricia Bauman, Chao-Nien Chen, Daniel Phillips, and Peter Sternberg. Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems. European J. Appl. Math., 6(2):115-126, 1995.
[12] Patricia Bauman and Daniel Phillips. Univalent minimizers of polyconvex functionals in two dimensions. Arch. Rational Mech. Anal., 126(2):161-181, 1994.
[13] Patricia Bauman, Neil N. Carlson, and Daniel Phillips. On the zeros of solutions to Ginzburg-Landau type systems. SIAM J. Math. Anal., 24(5):1283-1293, 1993.
[14] Patricia Bauman. Qualitative behavior of solutions to a system of partial differential equations from nonlinear elasticity. In Geometric analysis and nonlinear partial differential equations (Denton, TX, 1990), volume 144 of Lecture Notes in Pure and Appl. Math., pages 53-67. Dekker, New York, 1993.
[15] Patricia Bauman, Nicholas C. Owen, and Daniel Phillips. Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity. Comm. Partial Differential Equations, 17(7-8):1185-1212, 1992.
[16] Patricia Bauman, Daniel Phillips, and Nicholas C. Owen. Maximal smoothness of solutions to certain Euler-Lagrange equations from nonlinear elasticity. Proc. Roy. Soc. Edinburgh Sect. A, 119(3-4):241-263, 1991.
[17] Patricia Bauman, Nicholas C. Owen, and Daniel Phillips. Maximum principles and a priori estimates for a class of problems from nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8(2):119-157, 1991.
[18] Patricia Bauman and Daniel Phillips. A nonconvex variational problem related to change of phase. Appl. Math. Optim., 21(2):113-138, 1990.
[19] Patricia Bauman. Large-time behavior of solutions to a scalar conservation law in several space dimensions. In The legacy of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985), volume 64 of Contemp. Math., pages 209-217. Amer. Math. Soc., Providence, RI, 1987.
[20] Patricia Bauman and Daniel Phillips. Large-time behavior of solutions to a scalar conservation law in several space dimensions. Trans. Amer. Math. Soc., 298(1):401-419, 1986.
[21] Patricia Bauman and Daniel Phillips. Large-time behavior of solutions to certain quasilinear parabolic equations in several space dimensions. Proc. Amer. Math. Soc., 96(2):237-240, 1986.
[22] Patricia Bauman. A Wiener test for nondivergence structure, second-order elliptic equations. Indiana Univ. Math. J., 34(4):825-844, 1985.
[23] Patricia Bauman. Positive solutions of elliptic equations in nondivergence form and their adjoints. Ark. Mat., 22(2):153-173, 1984.
[24] Patricia Bauman. Equivalence of the Green's functions for diffusion operators in Rn: a counterexample. Proc. Amer. Math. Soc., 91(1):64-68, 1984.