Steven R Bell
S. Bell's Recent Papers
-
Density of Quadrature domains in one and several complex variables,
Complex Variables and Elliptic Equations, in press.
-
Szegö coordinates, quadrature domains, and double quadrature domains,
with Zachary A. Sylvan.
- A Riemann mapping theorem for two-connected domains, with Thomas
Tegtmeyer and Ersin Deger, Computational Methods and Function Theory
9 (2009), No. 1, 323-334.
- The Green's function and the Ahlfors map,
Indiana Univ. Math. J. 57 (2008), 3049-3063. **
- The structure of the semigroup of proper holomorphic
mappings of a planar domain to the unit disc,
Steven R. Bell and Faisal Kaleem, Computational Methods and Function Theory,
8 (2008), 225-242. **
- Bergman coordinates, Studia Math. 176 (2006), 69-83. **
- The Bergman kernel and quadrature domains,
Operator Theory: Advances and Applications 156 (2005), 61-78. **
- Quadrature domains and kernel function zipping,
Arkiv för matematik 43 (2005), 271-287. **
- Möbius transformations, the Carathéodory metric, and
the objects of complex analysis and potential theory in multiply
connected domains, Michigan Math. J. 51 (2003), 351-362.*
- Complexity in complex analysis, Advances in
Math. 172 (2002), 15-52.*
- Ahlfors maps, the double of a domain, and complexity in
potential theory and conformal mapping, Journal d'Analyse
Mathematique 78 (1999), 329-344.*
- The fundamental role of the Szegö kernel in potential theory
and complex analysis, Journal für die reine und
angewandte Mathematik 525 (2000), 1-16.
- A Riemann surface attached to domains in the plane
and complexity in potential theory, Houston J. Math. 26 (2000),
277-297.
- Finitely generated function fields and complexity in potential
theory in the plane, Duke Mathematical Journal 98
(1999), 187-207.
- Recipes for classical kernel functions associated to a
multiply connected domain in the plane, Complex Variables Theory and
Applications 29 (1996), 367-378.
- Complexity of the classical kernel functions of potential
theory, Indiana University Mathematics Journal 44 (1995),
1337-1369.
- Unique continuation theorems for the $\bar\partial$-operator
and applications. in J. of Geometric Analysis, 3 (1993), 195-224.
**This material is based upon work supported by the National Science Foundation under Grant No. 0305958
*Research supported by NSF grant DMS-0072197