Department of Mathematics

Steven R Bell

Steven R. Bell's Recent Papers

S. Bell's Recent Papers


  • Density of Quadrature domains in one and several complex variables, Complex Variables and Elliptic Equations, in press.


  • Szegö coordinates, quadrature domains, and double quadrature domains, with Zachary A. Sylvan.


  • A Riemann mapping theorem for two-connected domains, with Thomas Tegtmeyer and Ersin Deger, Computational Methods and Function Theory 9 (2009), No. 1, 323-334.


  • The Green's function and the Ahlfors map, Indiana Univ. Math. J. 57 (2008), 3049-3063. **


  • The structure of the semigroup of proper holomorphic mappings of a planar domain to the unit disc, Steven R. Bell and Faisal Kaleem, Computational Methods and Function Theory, 8 (2008), 225-242. **


  • Bergman coordinates, Studia Math. 176 (2006), 69-83. **


  • The Bergman kernel and quadrature domains, Operator Theory: Advances and Applications 156 (2005), 61-78. **


  • Quadrature domains and kernel function zipping, Arkiv för matematik 43 (2005), 271-287. **


  • Möbius transformations, the Carathéodory metric, and the objects of complex analysis and potential theory in multiply connected domains, Michigan Math. J. 51 (2003), 351-362.*


  • Complexity in complex analysis, Advances in Math. 172 (2002), 15-52.*


  • Ahlfors maps, the double of a domain, and complexity in potential theory and conformal mapping, Journal d'Analyse Mathematique 78 (1999), 329-344.*


  • The fundamental role of the Szegö kernel in potential theory and complex analysis, Journal für die reine und angewandte Mathematik 525 (2000), 1-16.


  • A Riemann surface attached to domains in the plane and complexity in potential theory, Houston J. Math. 26 (2000), 277-297.


  • Finitely generated function fields and complexity in potential theory in the plane, Duke Mathematical Journal 98 (1999), 187-207.


  • Recipes for classical kernel functions associated to a multiply connected domain in the plane, Complex Variables Theory and Applications 29 (1996), 367-378.


  • Complexity of the classical kernel functions of potential theory, Indiana University Mathematics Journal 44 (1995), 1337-1369.


  • Unique continuation theorems for the $\bar\partial$-operator and applications. in J. of Geometric Analysis, 3 (1993), 195-224.


**This material is based upon work supported by the National Science Foundation under Grant No. 0305958

*Research supported by NSF grant DMS-0072197