Department of Mathematics

Jim Douglas

Publications listed in MathSciNet

[1] Jim Douglas, Jr., Seongjai Kim, and Hyeona Lim. An improved alternating-direction method for a viscous wave equation. In Current trends in scientific computing (Xi'an, 2002), volume 329 of Contemp. Math., pages 99-104. Amer. Math. Soc., Providence, RI, 2003.
[2] Zhiqiang Cai, Jim Douglas, Jr., and Moongyu Park. Development and analysis of higher order finite volume methods over rectangles for elliptic equations. Adv. Comput. Math., 19(1-3):3-33, 2003. Challenges in computational mathematics (Pohang, 2001).
[3] F. Brezzi and N. Bellomo, editors. Dedicated to Jim Douglas, Jr. on the occasion of his 75th birthday. World Scientific Publishing Co. Pte. Ltd., Singapore, 2003. Math. Models Methods Appl. Sci. 13 (2003), no. 3.
[4] Jim Douglas, Jr., Diego Frías, Nélio Henderson, and Felipe Pereira. Simulation of single-phase multicomponent flow problems in gas reservoirs by Eulerian-Lagrangian techniques. Transp. Porous Media, 50(3):307-342, 2003.
[5] César Almeida, Jim Douglas, Jr., and Felipe Pereira. A new characteristics-based numerical method for miscible displacement in heterogeneous formations. Comput. Appl. Math., 21(2):573-605, 2002. Special issue on multi-scale science (Nova Friburgo, 2000).
[6] Jim Douglas, Jr., Chieh-Sen Huang, and Anna M. Spagnuolo. The approximation of nuclear contaminant transport in porous media. Comput. Appl. Math., 21(2):409-428, 2002. Special issue on multi-scale science (Nova Friburgo, 2000).
[7] Jim Douglas, Jr. and Anna M. Spagnuolo. Parameter estimates for high-level nuclear transport in fractured porous media. In Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), volume 295 of Contemp. Math., pages 173-183. Amer. Math. Soc., Providence, RI, 2002.
[8] Jim Douglas, Jr., Felipe Pereira, and Li-Ming Yeh. Relations between phase mobilities and capillary pressures for two-phase flows in fractured media. In Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), volume 295 of Contemp. Math., pages 159-171. Amer. Math. Soc., Providence, RI, 2002.
[9] César Almeida, Jim Douglas, Jr., Felipe Pereira, Luis Carlos Roman, and Li-Ming Yeh. Algorithmic aspects of a locally conservative Eulerian-Lagrangian method for transport-dominated diffusive systems. In Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), volume 295 of Contemp. Math., pages 37-48. Amer. Math. Soc., Providence, RI, 2002.
[10] Jim Douglas, Jr., Diego Frías, and Felipe Pereira. Operator splitting for compressible miscible displacement in porous media. In Scientific computing and applications (Kananaskis, AB, 2000), volume 7 of Adv. Comput. Theory Pract., pages 67-74. Nova Sci. Publ., Huntington, NY, 2001.
[11] Jim Douglas, Jr. and Seongjai Kim. Improved accuracy for locally one-dimensional methods for parabolic equations. Math. Models Methods Appl. Sci., 11(9):1563-1579, 2001.
[12] Jim Douglas, Jr. and Chieh-Sen Huang. A locally conservative Eulerian-Lagrangian finite difference method for a parabolic equation. BIT, 41(3):480-489, 2001.
[13] Jim Douglas, Jr., Juan E. Santos, and Dongwoo Sheen. Nonconforming Galerkin methods for the Helmholtz equation. Numer. Methods Partial Differential Equations, 17(5):475-494, 2001.
[14] Jim Douglas, Jr. and Anna M. Spagnuolo. The transport of nuclear contamination in fractured porous media. J. Korean Math. Soc., 38(4):723-761, 2001. Mathematics in the new millennium (Seoul, 2000).
[15] Jim Douglas, Jr., Felipe Pereira, and Li-Ming Yeh. A locally conservative Eulerian-Lagrangian method for flow in a porous medium of a mixture of two components having different densities. In Numerical treatment of multiphase flows in porous media (Beijing, 1999), volume 552 of Lecture Notes in Phys., pages 138-155. Springer, Berlin, 2000.
[16] Z. Cai, J. Douglas, Jr., J. E. Santos, D. Sheen, and X. Ye. Nonconforming quadrilateral finite elements: a correction. Calcolo, 37(4):253-254, 2000.
[17] Jim Douglas, Jr., Juan E. Santos, and Dongwoo Sheen. A nonconforming mixed method for the time-harmonic Maxwell equations. In Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000), pages 792-796. SIAM, Philadelphia, PA, 2000.
[18] Jim Douglas, Jr., Felipe Pereira, and Li-Ming Yeh. A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media. Comput. Geosci., 4(1):1-40, 2000.
[19] Jim Douglas, Jr., Juan E. Santos, and Dongwoo Sheen. A nonconforming mixed finite element method for Maxwell's equations. Math. Models Methods Appl. Sci., 10(4):593-613, 2000.
[20] Zhiqiang Cai, Jim Douglas, Jr., and Xiu Ye. A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo, 36(4):215-232, 1999.
[21] Jim Douglas, Jr., Juan E. Santos, Dongwoo Sheen, and Xiu Ye. Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. M2AN Math. Model. Numer. Anal., 33(4):747-770, 1999.
[22] Jim Douglas, Jr., Chieh-Sen Huang, and Felipe Pereira. The modified method of characteristics with adjusted advection. Numer. Math., 83(3):353-369, 1999.
[23] Jim Douglas, Jr., Chieh-Sen Huang, and Felipe Pereira. The modified method of characteristics with adjusted advection for an immiscible displacement problem. In Advances in computational mathematics (Guangzhou, 1997), volume 202 of Lecture Notes in Pure and Appl. Math., pages 53-73. Dekker, New York, 1999.
[24] Jim Douglas, Jr. and Chieh-Sen Huang. Accelerated domain decomposition iterative procedures for mixed methods based on Robin transmission conditions. Calcolo, 35(3):131-147, 1998.
[25] J. Douglas, Jr., M. Kischinhevsky, P. J. Paes Leme, and A. M. Spagnuolo. A multiple-porosity model for a single-phase flow through naturally-fractured porous media. Comput. Appl. Math., 17(1):19-48, 1998.
[26] Zhiqiang Cai and Jim Douglas, Jr. Stabilized finite element methods with fast iterative solution algorithms for the Stokes problem. Comput. Methods Appl. Mech. Engrg., 166(1-2):115-129, 1998.
[27] Jim Douglas, Jr., Felipe Pereira, and Li-Ming Yeh. A parallelizable method for two-phase flows in naturally-fractured reservoirs. Comput. Geosci., 1(3-4):333-368 (1998), 1997.
[28] Jim Douglas, Jr., Frederico Furtado, and Felipe Pereira. On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs. Comput. Geosci., 1(2):155-190, 1997.
[29] J. Douglas, Jr. and C.-S. Huang. An accelerated domain decomposition procedure based on Robin transmission conditions. BIT, 37(3):678-686, 1997. Direct methods, linear algebra in optimization, iterative methods (Toulouse, 1995/1996).
[30] Jim Douglas, Jr. and Daoqi Yang. Numerical experiments for a nonoverlapping domain decomposition method for partial differential equations. In Numerical analysis, pages 85-97. World Sci. Publ., River Edge, NJ, 1996.
[31] Zhangxin Chen and Jim Douglas, Jr. Modelling of compositional flow in naturally fractured reservoirs. In Environmental studies (Minneapolis, MN, 1992), volume 79 of IMA Vol. Math. Appl., pages 65-96. Springer, New York, 1996.
[32] Jim Douglas, Jr., Jin Ma, and Philip Protter. Numerical methods for forward-backward stochastic differential equations. Ann. Appl. Probab., 6(3):940-968, 1996.
[33] Jim Douglas, Jr. Alternating-direction iteration for the p-version of the finite element method. In Partial differential equations and applications, volume 177 of Lecture Notes in Pure and Appl. Math., pages 121-135. Dekker, New York, 1996.
[34] Jim Douglas, Jr., Felipe Pereira, and Li Ming Yeh. A parallelizable characteristic scheme for two phase flow. I. Single porosity models. Mat. Apl. Comput., 14(1):73-96, 1995.
[35] Jim Douglas, Jr., Felipe Pereira, and Juan E. Santos. A parallelizable approach to the simulation of waves in dispersive media. In Mathematical and numerical aspects of wave propagation (Mandelieu-La Napoule, 1995), pages 673-682. SIAM, Philadelphia, PA, 1995.
[36] Elwood T. Olsen and Jim Douglas, Jr. Bounds on spectral condition numbers of matrices arising in the p-version of the finite element method. Numer. Math., 69(3):333-352, 1995.
[37] C. C. Douglas, J. Douglas, Jr., and D. E. Fyfe. A unified multigrid theory for non-nested grids and/or quadrature. East-West J. Numer. Math., 2(4):285-294, 1994.
[38] Jim Douglas, Jr., Dongwoo Sheen, and Juan E. Santos. Approximation of scalar waves in the space-frequency domain. Math. Models Methods Appl. Sci., 4(4):509-531, 1994.
[39] Jim Douglas, Jr. and Jun Ping Wang. A new family of mixed finite element spaces over rectangles. Mat. Apl. Comput., 12(3):183-197, 1993.
[40] Jim Douglas, Jr., P. J. Paes-Leme, Felipe Pereira, and Li Ming Yeh. A massively parallel iterative numerical algorithm for immiscible flow in naturally fractured reservoirs. In Flow in porous media (Oberwolfach, 1992), volume 114 of Internat. Ser. Numer. Math., pages 75-93. Birkhäuser, Basel, 1993.
[41] Jim Douglas, Jr., Jeffrey L. Hensley, and Paulo Jorge Paes-Leme. A study of the effect of inhomogeneities on immiscible flow in naturally fractured reservoirs. In Flow in porous media (Oberwolfach, 1992), volume 114 of Internat. Ser. Numer. Math., pages 59-74. Birkhäuser, Basel, 1993.
[42] U. Hornung, editor. Flow in porous media, volume 114 of International Series of Numerical Mathematics, Basel, 1993. Birkhäuser Verlag.
[43] Jim Douglas, Jr., Paulo Jorge Paes-Leme, and Tiziana Giorgi. Generalized Forchheimer flow in porous media. In Boundary value problems for partial differential equations and applications, volume 29 of RMA Res. Notes Appl. Math., pages 99-111. Masson, Paris, 1993.
[44] Jim Douglas, Jr., Jeffrey L. Hensley, and Jean E. Roberts. An alternating-direction iteration method for Helmholz problems. In Proceedings of ISNA '92-International Symposium on Numerical Analysis, Part I (Prague, 1992), volume 38, pages 289-300, 1993.
[45] J. Douglas, Jr., P. J. Paes-Leme, J. E. Roberts, and Jun Ping Wang. A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods. Numer. Math., 65(1):95-108, 1993.
[46] Jim Douglas, Jr., Juan E. Santos, Dongwoo Sheen, and Lynn Schreyer Bennethum. Frequency domain treatment of one-dimensional scalar waves. Math. Models Methods Appl. Sci., 3(2):171-194, 1993.
[47] Craig C. Douglas and Jim Douglas, Jr. A unified convergence theory for abstract multigrid or multilevel algorithms, serial and parallel. SIAM J. Numer. Anal., 30(1):136-158, 1993.
[48] J. Douglas, Jr., J. L. Hensley, Yu Ting Wei, and et al. A derivation for Darcy's law for miscible fluids and a revised model for miscible displacement in porous media. In Computational methods in water resources, IX, Vol. 2 (Denver, CO, 1992), pages 165-178. Comput. Mech., Southampton, 1992.
[49] Craig C. Douglas and Jim Douglas, Jr. A greatly simplified theory for parallel multigrid or projection methods. In Parallel processing for scientific computing (Houston, TX, 1991), pages 105-110. SIAM, Philadelphia, PA, 1992.
[50] J. Douglas, Jr. and P. J. Paes-Leme. Finite difference methods for a model for immiscible displacement in naturally fractured petroleum reservoirs. Mat. Apl. Comput., 11(1):3-16, 1992.
[51] Zhangxin Chen and Jim Douglas, Jr. Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems. Mat. Apl. Comput., 10(2):137-160, 1991.
[52] J. Douglas, J. E. Santos, J. L. Hensley, and M. E. Morley. Simulation of waves arising in acoustic well-logging. Rend. Sem. Mat. Univ. Politec. Torino, (Special Issue):223-243 (1992), 1991. Numerical methods in applied science and industry (Torino, 1990).
[53] T. Arbogast, J. Douglas, Jr., and U. Hornung. Modeling of naturally fractured reservoirs by formal homogenization techniques. In Frontiers in pure and applied mathematics, pages 1-19. North-Holland, Amsterdam, 1991.
[54] Jim Douglas, Jr., Juan E. Santos, and Jeffrey L. Hensley. Simulation of Biot waves in a cylindrically symmetric domain. In Third International Conference on Hyperbolic Problems, Vol. I, II (Uppsala, 1990), pages 330-350. Studentlitteratur, Lund, 1991.
[55] Todd Arbogast, Jim Douglas, Jr., and Ulrich Hornung. Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal., 21(4):823-836, 1990.
[56] Juan E. Santos, Jim Douglas, Jr., Jaime Corberó, and Oscar M. Lovera. A model for wave propagation in a porous medium saturated by a two-phase fluid. J. Acoust. Soc. Amer., 87(4):1439-1448, 1990.
[57] Z. Chen and J. Douglas, Jr. Prismatic mixed finite elements for second order elliptic problems. Calcolo, 26(2-4):135-148 (1990), 1989.
[58] J. Douglas, Jr. and J. Wang. Superconvergence of mixed finite element methods on rectangular domains. Calcolo, 26(2-4):121-133 (1990), 1989.
[59] Jim Douglas, Jr. and Jun Ping Wang. An absolutely stabilized finite element method for the Stokes problem. Math. Comp., 52(186):495-508, 1989.
[60] Jim Douglas, Jr. Three models for waterflooding in a naturally fractured petroleum reservoir. In Proceedings of the Second International Symposium on Numerical Analysis (Prague, 1987), volume 107 of Teubner-Texte Math., pages 19-27, Leipzig, 1988. Teubner.
[61] Jim Douglas, Jr. and Chaitan P. Gupta. Superconvergence and interior estimates for a mixed finite element method for elastic waves in a planar domain. Mat. Apl. Comput., 7(2):75-99, 1988.
[62] Juan Enrique Santos, Jim Douglas, Jr., Mary E. Morley, and Oscar M. Lovera. Finite element methods for a model for full waveform acoustic logging. IMA J. Numer. Anal., 8(4):415-433, 1988.
[63] Jim Douglas, Jr. and Juan E. Santos. Approximation of waves in composite media. In The mathematics of finite elements and applications, VI (Uxbridge, 1987), pages 55-74. Academic Press, London, 1988.
[64] Franco Brezzi and Jim Douglas, Jr. Stabilized mixed methods for the Stokes problem. Numer. Math., 53(1-2):225-235, 1988.
[65] Juan Enrique Santos, Jim Douglas, Jr., and Alberto Pedro Calderón. Finite element methods for a composite model in elastodynamics. SIAM J. Numer. Anal., 25(3):513-532, 1988.
[66] Jim Douglas, Jr. and Yi Rang Yuan. Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedures. In Numerical simulation in oil recovery (Minneapolis, Minn., 1986), volume 11 of IMA Vol. Math. Appl., pages 119-131. Springer, New York, 1988.
[67] Todd Arbogast, Jim Douglas, Jr., and Juan E. Santos. Two-phase immiscible flow in naturally fractured reservoirs. In Numerical simulation in oil recovery (Minneapolis, Minn., 1986), volume 11 of IMA Vol. Math. Appl., pages 47-66. Springer, New York, 1988.
[68] J. Douglas, Jr. and F. A. Milner. Numerical methods for a model of population dynamics. Calcolo, 24(3-4):247-254 (1988), 1987.
[69] Franco Brezzi, Jim Douglas, Jr., Michel Fortin, and L. Donatella Marini. Efficient rectangular mixed finite elements in two and three space variables. RAIRO Modél. Math. Anal. Numér., 21(4):581-604, 1987.
[70] Jim Douglas, Jr. and Yuan Yirang. Finite difference methods for the transient behavior of a semiconductor device. Mat. Apl. Comput., 6(1):25-37, 1987.
[71] Jim Douglas, Jr., Ricardo Durán, and Paola Pietra. Formulation of alternating-direction iterative methods for mixed methods in three space. In Numerical approximation of partial differential equations (Madrid, 1985), volume 133 of North-Holland Math. Stud., pages 21-30. North-Holland, Amsterdam, 1987.
[72] Franco Brezzi, Jim Douglas, Jr., Ricardo Durán, and Michel Fortin. Mixed finite elements for second order elliptic problems in three variables. Numer. Math., 51(2):237-250, 1987.
[73] Jim Douglas, Jr., Ricardo Durán, and Paola Pietra. Alternating-direction iteration for mixed finite element methods. In Computing methods in applied sciences and engineering, VII (Versailles, 1985), pages 181-196. North-Holland, Amsterdam, 1986.
[74] Jim Douglas, Jr., Irene Martínez-Gamba, and M. Cristina J. Squeff. Simulation of the transient behavior of a one-dimensional semiconductor device. Mat. Apl. Comput., 5(2):103-122, 1986.
[75] F. Brezzi, J. Douglas, Jr., and L. D. Marini. Recent results on mixed finite element methods for second order elliptic problems. In Vistas in applied mathematics, Transl. Ser. Math. Engrg., pages 25-43. Optimization Software, New York, 1986.
[76] Jim Douglas, Jr. and Chaitan P. Gupta. Superconvergence for a mixed finite element method for elastic wave propagation in a plane domain. Numer. Math., 49(2-3):189-202, 1986.
[77] J. Douglas, Jr., C. P. Gupta, and Guang Yu Li. Interior and superconvergence estimates for a primal hybrid finite element method for second order elliptic problems. Calcolo, 22(1):187-207, 1985.
[78] F. Brezzi, J. Douglas, Jr., and L. D. Marini. Variable degree mixed methods for second order elliptic problems. Mat. Apl. Comput., 4(1):19-34, 1985.
[79] J. Douglas, Jr. and F. A. Milner. Interior and superconvergence estimates for mixed methods for second order elliptic problems. RAIRO Modél. Math. Anal. Numér., 19(3):397-428, 1985.
[80] Franco Brezzi, Jim Douglas, Jr., and L. D. Marini. Two families of mixed finite elements for second order elliptic problems. Numer. Math., 47(2):217-235, 1985.
[81] Jim Douglas, Jr. Superconvergence in the pressure in the simulation of miscible displacement. SIAM J. Numer. Anal., 22(5):962-969, 1985.
[82] Jim Douglas, Jr. and Jean E. Roberts. Global estimates for mixed methods for second order elliptic equations. Math. Comp., 44(169):39-52, 1985.
[83] Douglas N. Arnold, Franco Brezzi, and Jim Douglas, Jr. PEERS: a new mixed finite element for plane elasticity. Japan J. Appl. Math., 1(2):347-367, 1984.
[84] Jim Douglas, Jr. Improved accuracy through superconvergence in the pressure in the simulation of miscible displacement. In Computing methods in applied sciences and engineering, VI (Versailles, 1983), pages 633-638. North-Holland, Amsterdam, 1984.
[85] F. Brezzi, J. Douglas, Jr., and L. D. Marini. Two families of mixed finite elements for second order elliptic problems, volume 435 of Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche [Institute of Numerical Analysis of the National Research Council]. Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche, Pavia, 1984.
[86] F. Brezzi, J. Douglas, Jr., and L. D. Marini. Recent results on mixed finite element methods for second order elliptic problems, volume 431 of Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche [Institute of Numerical Analysis of the National Research Council]. Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche, Pavia, 1984.
[87] Douglas N. Arnold, Jim Douglas, Jr., and Chaitan P. Gupta. A family of higher order mixed finite element methods for plane elasticity. Numer. Math., 45(1):1-22, 1984.
[88] J. Douglas, Jr. Approximation of convection-dominated diffusion problems. In Partial differential equations and dynamical systems, volume 101 of Res. Notes in Math., pages 158-163. Pitman, Boston, MA, 1984.
[89] J. Douglas, Jr. and F. A. Milner. Numerical methods for a model of cardiac muscle contraction. Calcolo, 20(2):129-141 (1984), 1983.
[90] Jim Douglas, Jr. Finite difference methods for two-phase incompressible flow in porous media. SIAM J. Numer. Anal., 20(4):681-696, 1983.
[91] Jim Douglas, Jr., Chaitan P. Gupta, and Guang Yu Li. Global estimates for a primal hybrid finite element method for second order elliptic problems in the plane. Mat. Apl. Comput., 2(3):273-283, 1983.
[92] Jim Douglas, Jr., Richard E. Ewing, and Mary Fanett Wheeler. A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numér., 17(3):249-265, 1983.
[93] Jim Douglas, Jr. and Jean E. Roberts. Numerical methods for a model for compressible miscible displacement in porous media. Math. Comp., 41(164):441-459, 1983.
[94] Jim Douglas, Jr., Richard E. Ewing, and Mary Fanett Wheeler. The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numér., 17(1):17-33, 1983.
[95] Jim Douglas, Jr. and Mary Fanett Wheeler. Implicit, time-dependent variable grid finite difference methods for the approximation of a linear waterflood. Math. Comp., 40(161):107-121, 1983.
[96] Jim Douglas, Jr. Sur la résolution numérique des problèmes de diffusion avec une grande convection et d'écoulements miscibles en milieu poreux. In Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. III (Paris, 1980/1981), volume 70 of Res. Notes in Math., pages 179-200, 427. Pitman, Boston, Mass., 1982.
[97] Jim Douglas, Jr. and Thomas F. Russell. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal., 19(5):871-885, 1982.
[98] J. Douglas, Jr. and J. E. Roberts. Mixed finite element methods for second order elliptic problems. Mat. Apl. Comput., 1(1):91-103, 1982.
[99] Jim Douglas, Jr. Simulation of miscible displacement in porous media by a modified method of characteristic procedure. In Numerical analysis (Dundee, 1981), volume 912 of Lecture Notes in Math., pages 64-70. Springer, Berlin, 1982.
[100] Douglas N. Arnold, Jim Douglas, Jr., and Vidar Thomée. Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable. Math. Comp., 36(153):53-63, 1981.
[101] Jim Douglas, Jr. Simulation of a linear waterflood. In Free boundary problems, Vol. II (Pavia, 1979), pages 195-216. Ist. Naz. Alta Mat. Francesco Severi, Rome, 1980.
[102] Jim Douglas, Jr. The numerical simulation of miscible displacement in porous media. In Computational methods in nonlinear mechanics (Proc. Second Internat. Conf., Univ. Texas, Austin, Tex., 1979), pages 225-237. North-Holland, Amsterdam, 1980.
[103] Jim Douglas, Jr. Recent results concerning simulation of miscible flow in porous media. In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pages 1-8. Soc. Brasil. Mat., Rio de Janeiro, 1980.
[104] D. N. Arnold and J. Douglas, Jr. Superconvergence of the Galerkin approximation of a quasilinear parabolic equation in a single space variable. Calcolo, 16(4):345-369 (1980), 1979.
[105] Jim Douglas, Jr. Effective time-stepping methods for the numerical solution of nonlinear parabolic problems. In Mathematics of finite elements and applications, III (Proc. Third MAFELAP Conf., Brunel Univ., Uxbridge, 1978), pages 289-304. Academic Press, London, 1979.
[106] Jim Douglas, Jr., Todd Dupont, Peter Percell, and Ridgway Scott. A family of C1 finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems. RAIRO Anal. Numér., 13(3):227-255, 1979.
[107] Jim Douglas, Jr., Todd Dupont, and Richard E. Ewing. Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem. SIAM J. Numer. Anal., 16(3):503-522, 1979.
[108] Jim Douglas, Jr., Todd Dupont, and Mary F. Wheeler. A quasi-projection analysis of Galerkin methods for parabolic and hyperbolic equations. Math. Comp., 32(142):345-362, 1978.
[109] Jim Douglas, Jr., Todd Dupont, and Peter Percell. A time-stepping method for Galerkin approximations for nonlinear parabolic equations. In Numerical analysis (Proc. 7th Biennial Conf., Univ. Dundee, Dundee, 1977), pages 64-75. Lecture Notes in Math., Vol. 630. Springer, Berlin, 1978.
[110] Jim Douglas, Jr. and Todd Dupont. H-1 Galerkin methods for problems involving several space variables. In Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin, 1976), pages 125-141. Academic Press, London, 1977.
[111] Jim Douglas, Jr. H1-Galerkin methods for a nonlinear Dirichlet problem. In Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pages 64-86. Lecture Notes in Math., Vol. 606. Springer, Berlin, 1977.
[112] Jim Douglas, Jr., Todd Dupont, Henry H. Rachford, Jr., and Mary F. Wheeler. Local H-1 Galerkin procedures for elliptic equations. RAIRO Anal. Numér., 11(1):3-12, 111, 1977.
[113] Jim Douglas, Jr. and Todd Dupont. Preconditioned conjugate gradient iteration applied to Galerkin methods for a mildly nonlinear Dirichlet problem. In Sparse matrix computations (Proc. Sympos., Argonne Nat. Lab., Lemont, Ill., 1975), pages 333-348. Academic Press, New York, 1976.
[114] Jim Douglas, Jr. and Todd Dupont. Interior penalty procedures for elliptic and parabolic Galerkin methods. In Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975), pages 207-216. Lecture Notes in Phys., Vol. 58. Springer, Berlin, 1976.
[115] Jim Douglas, Jr. and Todd Dupont. The effect of interpolating the coefficients in nonlinear parabolic Galerkin procedures. Math. Comput., 20(130):360-389, 1975.
[116] Jim Douglas, Jr. and Todd Dupont. A Galerkin method for a nonlinear Dirichlet problem. Math. Comp., 29:689-696, 1975.
[117] Lars Wahlbin. Error estimates for a Galerkin method for a class of model equations for long waves. Numer. Math., 23:289-303, 1975. With an appendix by Lars Wahlbin, Jim Douglas, Jr. and Todd Dupont.
[118] Jim Douglas, Jr., Todd Dupont, and Lars Wahlbin. Optimal L error estimates for Galerkin approximations to solutions of two-point boundary value problems. Math. Comp., 29:475-483, 1975.
[119] Jim Douglas, Jr. and Todd Dupont. Collocation methods for parabolic equations in a single space variable. Springer-Verlag, Berlin, 1974. Based on C1-piecewise-polynomial spaces, Lecture Notes in Mathematics, Vol. 385.
[120] Jim Douglas, Jr., Todd Dupont, and Mary Fanett Wheeler. Some superconvergence results for an H1-Galerkin procedure for the heat equation. In Computing methods in applied sciences and engineering (Proc. Internat. Sympos., Versailles, 1973), Part 1, pages 288-311. Lecture Notes in Comput. Sci., Vol. 10. Springer, Berlin, 1974.
[121] Jim Douglas, Jr., Todd Dupont, and Lars Wahlbin. The stability in Lq of the L2-projection into finite element function spaces. Numer. Math., 23:193-197, 1974/75.
[122] Jim Douglas, Jr. and Todd Dupont. Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces. Numer. Math., 22:99-109, 1974.
[123] Jim Douglas, Jr., Todd Dupont, and Mary Fanett Wheeler. An L estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials. Rev. Française Automat. Informat. Recherche Opérationnelle Sér Rouge, 8(R-2):61-66, 1974.
[124] Jim Douglas, Jr., Todd Dupont, and Mary Fanett Wheeler. A Galerkin procedure for approximating the flux on the boundary for elliptic and parabolic boundary value problems. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8(R-2):47-59, 1974.
[125] Carl de Boor, editor. Mathematical aspects of finite elements in partial differential equations. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Publication No. 33 of the Mathematics Research Center, The University of Wisconsin-Madison.
[126] Jim Douglas, Jr. and Todd Dupont. Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems. In Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972), pages 89-92. Academic Press, London, 1973.
[127] Jim Douglas, Jr. and Todd Dupont. A finite element collocation method for quasilinear parabolic equations. Math. Comp., 27:17-28, 1973.
[128] Jim Douglas, Jr. and Todd Dupont. Superconvergence for Galerkin methods for the two point boundary problem via local projections. Numer. Math., 21:270-278, 1973/74.
[129] Jim Douglas, Jr. A superconvergence result for the approximate solution of the heat equation by a collocation method. In The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), pages 475-490. Academic Press, New York, 1972.
[130] Jim Douglas, Jr. and Todd Dupont. A finite element collocation method for the heat equation. In Symposia Mathematica, Vol. X (Convegno di Analisi Numerica, INDAM, Rome, 1972), pages 403-410. Academic Press, London, 1972.
[131] Jim Douglas, Jr. and Todd Dupont. Galerkin methods for parabolic equations with nonlinear boundary conditions. Numer. Math., 20:213-237, 1972/73.
[132] Jim Douglas, Jr. The flow of fluids in porous media. In Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 3, pages 65-69. Gauthier-Villars, Paris, 1971.
[133] Jim Douglas, Jr., Todd Dupont, and James Serrin. Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form. Arch. Rational Mech. Anal., 42:157-168, 1971.
[134] Jim Douglas, Jr. and Todd Dupont. Alternating-direction Galerkin methods on rectangles. In Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), pages 133-214. Academic Press, New York, 1971.
[135] Jim Douglas, Jr. and Todd Dupont. Galerkin methods for parabolic equations. SIAM J. Numer. Anal., 7:575-626, 1970.
[136] Jim Douglas, Jr. and Todd Dupont. The numerical solution of waterflooding problems in petroleum engineering by variational methods. In Studies in Numerical Analysis, 2: Numerical Solutions of Nonlinear Problems (Symposia, SIAM, Philadelphia, Pa., 1968), pages 53-63. Soc. Indust. Appl. Math., Philadelphia, Pa., 1970.
[137] Jim Douglas, Jr. The numerical solution of a compositional model in petroleum reservoir engineering. In Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968), SIAM-AMS Proc., Vol. II, pages 54-59. Amer. Math. Soc., Providence, R.I., 1970.
[138] J. R. Cannon and Jim Douglas, Jr. The approximation of harmonic and parabolic functions on half-spaces from interior data. In Numerical Analysis of Partial Differential Equations (C.I.M.E. 2 Ciclo, Ispra, 1967), pages 193-230. Edizioni Cremonese, Rome, 1968.
[139] J. R. Cannon, Jim Douglas, Jr., and C. Denson Hill. A multi-boundary Stefan problem and the disappearance of phases. J. Math. Mech., 17:21-33, 1967.
[140] J. R. Cannon and Jim Douglas, Jr. The stability of the boundary in a Stefan problem. Ann. Scuola Norm. Sup. Pisa (3), 21:83-91, 1967.
[141] J. R. Cannon and Jim Douglas, Jr. The Cauchy problem for the heat equation. SIAM J. Numer. Anal., 4:317-336, 1967.
[142] Jim Douglas, Jr. The approximate solution of an unstable physical problem subject to constraints. In Functional Analysis and Optimization, pages 65-66. Academic Press, New York, 1966.
[143] Jim Douglas, Jr., A. O. Garder, and Carl Pearcy. Multistage alternating direction methods. SIAM J. Numer. Anal., 3:570-581, 1966.
[144] Jim Douglas, Jr. Approximate continuation of harmonic and parabolic functions. In Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965), pages 353-364. Academic Press, New York, 1966.
[145] Jim Douglas. Approximate harmonic continuation. In Atti del Convegno su le Equazioni alle Derivate Parziali (Nervi, 1965), page p. 59. Edizioni Cremonese, Rome, 1966.
[146] Jim Douglas, Jr. and James E. Gunn. A general formulation of alternating direction methods. I. Parabolic and hyperbolic problems. Numer. Math., 6:428-453, 1964.
[147] John R. Cannon and Jim Douglas, Jr. Three-level alternating-direction iterative methods. Contributions to Differential Equations, 3:189-198, 1964.
[148] J. Douglas, Jr., R. B. Kellogg, and R. S. Varga. Alternating direction iteration methods for n space variables. Math. Comp., 17:279-282, 1963.
[149] J. R. Cannon, Jim Douglas, Jr., and B. Frank Jones, Jr. Determination of the diffusivity of an isotropic medium. Internat. J. Engrg. Sci., 1:453-455, 1963.
[150] Jim Douglas, Jr. and Carl M. Pearcy. On convergence of alternating direction procedures in the presence of singular operators. Numer. Math., 5:175-184, 1963.
[151] Jim Douglas, Jr. and B. F. Jones, Jr. On predictor-corrector methods for nonlinear parabolic differential equations. J. Soc. Indust. Appl. Math., 11:195-204, 1963.
[152] Jim Douglas, Jr. and James E. Gunn. Two high-order correct difference analogues for the equation of multidimensional heat flow. Math. Comp., 17:71-80, 1963.
[153] Jim Douglas, Jr. and James E. Gunn. Alternating direction methods for parabolic systems in m space variables. J. Assoc. Comput. Mach., 9:450-456, 1962.
[154] Jim Douglas, Jr. and B. Frank Jones, Jr. The determination of a coefficient in a parabolic differential equation. II. Numerical approximation. J. Math. Mech., 11:919-926, 1962.
[155] Jim Douglas, Jr. A correction to my paper “Alternating direction iteration for mildly nonlinear elliptic difference equations”. Numer. Math., 4:301-302, 1962.
[156] Jim Douglas, Jr. and B. Frank Jones, Jr. Numerical methods for integro-differential equations of parabolic and hyperbolic types. Numer. Math., 4:96-102, 1962.
[157] Jim Douglas, Jr. Alternating direction methods for three space variables. Numer. Math., 4:41-63, 1962.
[158] Jim Douglas, Jr. A survey of numerical methods for parabolic differential equations. In Advances in Computers, Vol. 2, pages 1-54. Academic Press, New York, 1961.
[159] Jim Douglas, Jr. On incomplete iteration for implicit parabolic difference equations. J. Soc. Indust. Appl. Math., 9:433-439, 1961.
[160] Jim Douglas, Jr. Alternating direction iteration for mildly nonlinear elliptic difference equations. Numer. Math., 3:92-98, 1961.
[161] Jim Douglas, Jr. Mathematical programming and integral equations. In Sympos. on the Numerical Treatment of Ordinary Differential Equations, Integral and Integro-Differential Equations (Rome, 1960), pages 269-274. Birkhäuser, Basel, 1960.
[162] Jim Douglas, Jr. A numerical method for analytic continuation. In Boundary problems in differential equations, pages 179-189. Univ. of Wisconsin Press, Madison, 1960.
[163] Jim Douglas, Jr. A numerical method for the solution of a parabolic system. Numer. Math., 2:91-98, 1960.
[164] Jim Douglas, Jr. On the numerical solution of a non-linear, first-order differential equation. In Symposium on the numerical treatment of partial differential equations with real characteristics: Proceedings of the Rome Symposium (28-29-30 January 1959) organized by the Provisional International Computation Centre, pages 12-16, Rome, 1959. Libreria Eredi Virgilio Veschi.
[165] Jim Douglas, Jr. An unusual stability criterion for a difference analogue of the heat equation. J. Math. Phys., 38:150-152, 1959/1960.
[166] Jim Douglas, Jr. and T. M. Gallie, Jr. An approximate solution of an improper boundary value problem. Duke Math. J., 26:339-347, 1959.
[167] Jim Douglas, Jr. Round-off error in the numerical solution of the heat equation. J. Assoc. Comput. Mach., 6:48-58, 1959.
[168] Jim Douglas, Jr. The application of stability analysis in the numerical solution of quasi-linear parabolic differential equations. Trans. Amer. Math. Soc., 89:484-518, 1958.
[169] Jim Douglas, Jr. A uniqueness theorem for the solution of a Stefan problem. Proc. Amer. Math. Soc., 8:402-408, 1957.
[170] Jim Douglas, Jr. A note on the alternating direction implicit method for the numerical solution of heat flow problems. Proc. Amer. Math. Soc., 8:409-412, 1957.
[171] Jim Douglas, Jr. The solution of the diffusion equation by a high order correct difference equation. J. Math. Phys., 35:145-151, 1956.
[172] Jim Douglas, Jr. On the errors in analogue solutions of heat conduction problems. Quart. Appl. Math., 14:333-335, 1956.
[173] Jim Douglas, Jr. and H. H. Rachford, Jr. On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc., 82:421-439, 1956.
[174] Jim Douglas, Jr. On the relation between stability and convergence in the numerical solution of linear parabolic and hyperbolic differential equations. J. Soc. Indust. Appl. Math., 4:20-37, 1956.
[175] Jim Douglas, Jr. On the numerical integration of quasilinear parabolic differential equations. Pacific J. Math., 6:35-42, 1956.
[176] Jim Douglas, Jr. and T. M. Gallie, Jr. On the numerical integration of a parabolic differential equation subject to a moving boundary condition. Duke Math. J., 22:557-571, 1955.
[177] Jim Douglas, Jr. and T. M. Gallie, Jr. Variable time steps in the solution of the heat flow equation by a difference equation. Proc. Amer. Math. Soc., 6:787-793, 1955.
[178] Jim Douglas, Jr. On the numerical integration of 2u/x 2+2u/y2=u/t by implicit methods. J. Soc. Indust. Appl. Math., 3:42-65, 1955.